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Abstract. This paper deals with a competition model with dynamically al-

located toxin production in the unstirred chemostat. First, the existence and
uniqueness of positive steady state solutions of the single population model is

attained by the general maximum principle, spectral analysis and degree the-
ory. Second, the existence of positive equilibria of the two-species system is

investigated by the degree theory, and the structure and stability of nonne-

gative equilibria of the two-species system are established by the bifurcation
theory. The results show that stable coexistence solution can occur with dy-

namic toxin production, which cannot occur with constant toxin production.

Biologically speaking, it implies that dynamically allocated toxin production is
sufficiently effective in the occurrence of coexisting. Finally, numerical results

illustrate that a wide variety of dynamical behaviors can be achieved for the sy-

stem with dynamic toxin production, including competition exclusion, bistable
attractors, stable positive equilibria and stable limit cycles, which complement

the analytic results.

1. Introduction. The chemostat is a basic resource-based model for competition
in an open system and a standard model for the laboratory bio-reactor, which plays
an important role in the study of population dynamics and species interactions (see,
e.g., [14, 27]).

The study on the problem of the influence of toxicants both on the growth of one
population and on the competition of two species for a critical nutrient has received
considerable attention in the past decades (see, e.g., [1, 2, 5, 11, 13, 21, 22, 18, 19, 20,
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28, 30, 31]). Particularly, there has been a lot of interest in the so called allelopathic
competitions between species (see, e.g., [2, 5, 16, 21, 22, 18, 24, 28]). Allelopathy
can be defined as the direct or indirect harmful effect of one species on another by
releasing a chemical compound into the surrounding environment[25]. Allelopathic
competition occurs between algal species[16], algae and bacteria[28], bacteria and
bacteria[3], algae and aquatic plants[24] as well as plants and plants[2]. Several
experimental results concerning bacterial competition show that the production
of allelopathic chemical compound depends on the concentrations of populations
through a quorum sensing mechanism [3, 12]. As a consequence, a general mathe-
matical model was first proposed in [5] to model such a mechanism. In [5], the basic
assumption is that the chemostat is well-stirred and the weaker competitor can de-
vote some of its resources to the dynamically allocated production of an allelopathic
agent (which is also called anti-competitor toxin or just toxin). Dynamically alloca-
ted production implies that the effort devoted to toxin production can be adjusted
to reflect the state of the competition. For instance, if there is no competition,
there is no resource devoted to the toxin production. The numerical examples in
[5] show that some new interesting dynamical behaviors occur, including stable in-
terior rest points and stable limit cycles, in contrast to the model with constant
toxin production. This suggests a possible mechanism for coexistence. Rigorous
mathematical analysis of allelopathic competition models with quorum sensing in
the well-stirred chemostat-like environment can be found, for example, in [1, 11, 13].

Our goal here is to explore the role of the dynamic toxin production and spatial
heterogeneity in the competition process. Thus we remove the well-stirred hypot-
hesis and consider the following chemostat model with dynamically allocated toxin
production and diffusion

St = dSxx −
1

η1
auf1(S)− 1

η2
bvf2(S), x ∈ (0, L), t > 0,

ut = duxx + auf1(S)− cpu, x ∈ (0, L), t > 0,
vt = dvxx + (1−K(u, v))bvf2(S), x ∈ (0, L), t > 0,
pt = dpxx +K(u, v)bvf2(S), x ∈ (0, L), t > 0

(1)

with boundary conditions and initial conditions

Sx(0, t) = −S0, Sx(L, t) + νS(L, t) = 0, t > 0,
ux(0, t) = ux(L, t) + νu(L, t) = 0, t > 0,
vx(0, t) = vx(L, t) + νv(L, t) = 0, t > 0,
px(0, t) = px(L, t) + νp(L, t) = 0, t > 0,

(2)

S(x, 0) = S0(x) ≥ 0, u(x, 0) = u0(x) ≥ 0, 6≡ 0, x ∈ [0, L],
v(x, 0) = v0(x) ≥ 0, 6≡ 0, p(x, 0) = p0(x) ≥ 0, 6≡ 0, x ∈ [0, L].

(3)

Here S(x, t) is the concentration of the nutrient in the vessel at time t, u(x, t) is
the concentration of the sensitive microorganism, v(x, t) is the concentration of the
toxin producing organism and p(x, t) is the concentration of the toxicant. S0 > 0
is the input concentration of the nutrient, which is assumed to be constant. L is
the depth of the vessel, ν is a positive constant. d is the diffusion rate of the che-
mostat, ηi(i = 1, 2) are the growth yield coefficients. a, b are the maximal growth
rates of two microorganisms, respectively. The response functions are denoted by
fi(S) = S

ki+S
, i = 1, 2, where ki are the Michaelis-Menten constants. The inte-

raction between the toxin and the sensitive microorganisms is taken to be of mass
action form−cpu, where the constant of proportionality c > 0. The functionK(u, v)
represents the fraction of potential growth devoted to producing the toxin, which is
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assumed to be a smooth function satisfying 0 ≤ K(u, v) < 1. K(u, v) ≡ 0 produces
a system asymptotic to the standard chemostat, and K(u, v) ≡ k(contant) is the
system studied in [15, 18].

The production of anti-competitor toxins is of interest when the weaker compe-
titor can produce toxins against its competitors. The introduction of the function
K(u, v) is based on the assumption that the effort devoted to toxin production can
be dynamically allocated as a function of the state of the system, which reflects
the mechanism of quorum sensing (see [3]). In [15], Hsu and Waltman assumed
K(u, v) ≡ k(contant) and studied the competition in the well-stirred chemostat
when the weaker competitor produces toxins. Considering spatial heterogeneity,
the system (1)-(3) with K(u, v) ≡ k(contant) was investigated in [18]. The results
in [15, 18] indicate that coexistence cannot occur when the effort devoted to toxin
production is constant even if taking into account diffusion.

The focus of this study is to investigate the dynamical behavior of the system (1)-
(3) in combination with the effects of dynamically allocated toxin production and
diffusion, and to explain the coexistence of two species in competition on a single
resource in the unstirred chemostat. To this end, we assume that the function
K(u, v) satisfies the hypotheses

(H1) : K(u, v) is C1 continuous in R+ × R+, where R+ = [0,+∞);
(H2) : 0 ≤ K(u, v) < 1 for any u, v ∈ R+;
(H3) : K(0, 0) = 0,K(u, v) > 0 for u > 0, v > 0, and Kv(0, v) ≥ 0 for any v ∈ R+.

Meanwhile, we can extend the response functions fi : [0,+∞) → R to f̄i : R → R
such that f̄i(S) = fi(S) for S ≥ 0, f̄i(S) < 0 for S < 0, and f̄i ∈ C1(R) (see
[18, 21]). We will denote f̄i(S) by fi(S) for simplicity.

By suitable scaling, we may take S0 = 1, ηi = 1(i = 1, 2) and L = 1. Then the
original system (1)-(3) becomes

St = dSxx − auf1(S)− bvf2(S), x ∈ (0, 1), t > 0,
ut = duxx + auf1(S)− cpu, x ∈ (0, 1), t > 0,
vt = dvxx + (1−K(u, v))bvf2(S), x ∈ (0, 1), t > 0,
pt = dpxx +K(u, v)bvf2(S), x ∈ (0, 1), t > 0

(4)

with boundary conditions

Sx(0, t) = −1, Sx(1, t) + νS(1, t) = 0, t > 0,
ux(0, t) = ux(1, t) + νu(1, t) = 0, t > 0,
vx(0, t) = vx(1, t) + νv(1, t) = 0, t > 0,
px(0, t) = px(1, t) + νp(1, t) = 0, t > 0,

(5)

and initial conditions (3).
As mentioned before, we concentrate on coexistence solutions (i.e. stable positive

solutions) of the following steady state system

dSxx − auf1(S)− bvf2(S) = 0, x ∈ (0, 1),
duxx + auf1(S)− cpu = 0, x ∈ (0, 1),
dvxx + (1−K(u, v))bvf2(S) = 0, x ∈ (0, 1),
dpxx +K(u, v)bvf2(S) = 0, x ∈ (0, 1),

(6)

with boundary conditions

Sx(0) = −1, Sx(1) + νS(1) = 0, ux(0) = ux(1) + νu(1) = 0,
vx(0) = vx(1) + νv(1) = 0, px(0) = px(1) + νp(1) = 0.

(7)
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The main technical difficulties in our analysis come from the basic assumption
that the weaker competitor can devote some of its resources to the dynamically
allocated production of anti-competitor toxins. Consequently, the usual reduction
of the system to a competitive system of one order lower through the conservation of
nutrient principle is lost. Thus the system with toxin production is non-monotone,
and the single population model can’t be reduced to a scalar system. Hence, it is
hard to study the uniqueness and stability of the semitrivial nonnegative equilibria.

The main goal of Section 2 is to study the uniqueness and some properties of
single population equilibrium by the general maximum principle, spectral analysis
and degree theory. The main results are given by Theorems 2.1 and 2.2. Since
the single population model (9) can’t be reduced to a scalar system, it is much
more difficult to prove Theorem 2.2 than Theorem 2.1. The crucial point of proving
Theorem 2.2 is to establish Lemma 2.4, which indicates that any positive solution
of (9) is nondegenerative and has index 1. In Section 3, the existence of positive
solutions of the steady state system (6)-(7) is investigated by the degree theory.
The structure and stability of the nonnegative solutions of (6)-(7) is established by
the bifurcation theory in Section 4. Lemma 2.4 and Remark 2.1 also play a key
role in verifying the main outcomes (see Theorems 3.1, 4.2 and 4.3). It turns out
that stable coexistence solutions can occur with dynamic toxin production, which
cannot occur with constant toxin production. Biologically speaking, it implies that
dynamically allocated toxin production is sufficiently effective in the occurrence of
coexisting. Finally, some numerical results illustrate the existence of coexistence
solutions, bi-stable attractors or stable limit cycles, which complement the analytic
results.

2. Uniqueness of single population equilibria. The goal of this section is to
determine the properties of single population equilibria of (4)-(5). Mathematically,
this means that u or v is set to zero in the system (4)-(5), or equivalently, the initial
data u0(x) ≡ 0 or v0(x) ≡ 0, respectively. Hence, we obtain the following reduced
boundary value problems

dSxx − auf1(S) = 0, x ∈ (0, 1),
duxx + auf1(S)− cpu = 0, x ∈ (0, 1),
dpxx = 0, x ∈ (0, 1),
Sx(0) = −1, Sx(1) + νS(1) = 0,
ux(0) = ux(1) + νu(1) = 0, px(0) = px(1) + νp(1) = 0,

(8)

dSxx − bvf2(S) = 0, x ∈ (0, 1),
dvxx + (1−K(0, v))bvf2(S) = 0, x ∈ (0, 1),
dpxx +K(0, v)bvf2(S) = 0, x ∈ (0, 1),
Sx(0) = −1, Sx(1) + νS(1) = 0,
vx(0) = vx(1) + νv(1) = 0, px(0) = px(1) + νp(1) = 0.

(9)

To work out the properties of the solutions of the reduced boundary value pro-
blems (8) and (9), we introduce λ1, σ1 as the principal eigenvalues of the problems
respectively,

d(φ1)xx + λ1f1(z)φ1 = 0 in (0, 1), (φ1)x(0) = (φ1)x(1) + νφ1(1) = 0,
d(ψ1)xx + σ1f2(z)ψ1 = 0 in (0, 1), (ψ1)x(0) = (ψ1)x(1) + νψ1(1) = 0,

(10)

with the associated eigenfunctions φ1, ψ1 > 0 on [0, 1], normalized with max
[0,1]

φ1 =

1, max
[0,1]

ψ1 = 1.
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For the reduced boundary value problems (8), it is easy to see that p ≡ 0 on [0,
1], and (S, u) satisfies

dSxx − auf1(S) = 0, x ∈ (0, 1),
duxx + auf1(S) = 0, x ∈ (0, 1),
Sx(0) = −1, Sx(1) + νS(1) = 0, ux(0) = ux(1) + νu(1) = 0.

(11)

Let W = S + u. Then dWxx = 0, x ∈ (0, 1), Wx(0) = −1,Wx(1) + νW (1) = 0,
which implies W = z(x) = 1+ν

ν − x on [0, 1]. Hence, S = z − u, and u satisfies

duxx + auf1(z − u) = 0, x ∈ (0, 1), ux(0) = ux(1) + νu(1) = 0. (12)

It follows from Theorem 2.1 in [20] that 0 is the unique nonnegative solution of (12)
if a ≤ λ1, and there exists a unique positive solution of (12) if a > λ1, which is
denoted by θa. Therefore, (z, 0, 0) is the unique nonnegative solution of (8) if a ≤ λ1,
and there exists a unique positive solution (z − θa, θa, 0) if a > λ1. Furthermore,
we have the following results.

Theorem 2.1. If a ≤ λ1, then (z, 0, 0) is the unique nonnegative solution of the
single population model (8); if a > λ1, then (8) has a unique positive solution
(z − θa, θa, 0). Moreover, θa satisfies the following properties:

(i) 0 < θa < z;
(ii) θa is continuously differentiable for a ∈ (λ1,+∞), and is pointwisely increa-

sing when a increases;
(iii) lim

a→λ1

θa = 0 uniformly for x ∈ [0, 1];

(iv) lim
a→∞

θa = z(x) uniformly for x ∈ [0, 1];

(v) Let La = −d d2

dx2 − af1(z − θa) + aθaf
′
1(z − θa). Then La is a differentiable

operator in C2
B [0, 1] = {u ∈ C2[0, 1] : ux(0) = ux(1) + νu(1) = 0} and

all eigenvalues of La are strictly positive, which implies that La is a non-
degenerate and positive operator in C2

B [0, 1].

Proof. By Lemmas 3.3–3.4 in [32] and Propositions 2.3–2.4 in [20], one can conclude
that θa satisfies the above properties (i)-(iii) and (v). Hence, we only need to show
(iv).

Since 0 < θa < z(x) and θa is pointwisely increasing with respect to a ∈ (λ1,∞),
we only need to show that for any ε > 0, θa > (1− ε)z(x) provided that a is large
enough. To this end, let θ ∈ C∞[0, 1], and (1− ε)z(x) < θ < (1− ε

2 )z(x). Then

dθxx + aθf1(z − θ) = a[
d

a
θxx + θf1(z − θ)] > a[

d

a
θxx + (1− ε)zf1(

ε

2
z)] > 0,

provided that ‖θxx‖ is bounded and a is large enough. That is, for any ε > 0,
there exists A(ε) > 0 and θ ∈ C∞[0, 1], (1 − ε)z(x) < θ < (1 − ε

2 )z(x), ‖θxx‖
bounded and −θx(0) ≤ 0, θx(1) + νθ(1) ≤ 0 such that dθxx + aθf1(z − θ) > 0
provided that a > A(ε). Clearly, z(x) is a super-solution of (12). Hence we have
z(x) > θa > θ > (1 − ε)z(x) by the super- and sub- solution method and the
uniqueness of positive solutions to (12). Letting ε → 0, we obtain lim

a→∞
θa = z(x)

uniformly for x ∈ [0, 1].

Next, we begin to study nonnegative solutions of (9). If K(0, v) ≡ 0, then it is
easy to see that p ≡ 0 and S + v ≡ z(x) on [0, 1]. Hence, (9) can be reduced into
the scalar system

dvxx + bvf2(z − v) = 0, x ∈ (0, 1), vx(0) = vx(1) + νv(1) = 0. (13)
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By similar arguments as in Theorem 2.1, we can conclude that 0 is the unique
nonnegative solution of (13) if b ≤ σ1, and there exists a unique positive solution
of (13) if b > σ1, which is denoted by ϑb. Moreover, by similar arguments as in
Theorem 2.1 again, we have the following similar outcomes.

Lemma 2.2. Suppose (H1) − (H3) hold and K(0, v) ≡ 0. Then if b ≤ σ1, then
(z, 0, 0) is the unique nonnegative solution of the single population model (9); if
b > σ1, then (9) has a unique positive solution (z−ϑb, ϑb, 0). Moreover, ϑb satisfies
the following properties:

(i) 0 < ϑb < z;
(ii) ϑb is continuously differentiable for b ∈ (σ1,+∞), and is pointwisely increa-

sing when b increases;
(iii) lim

b→σ1

ϑb = 0 uniformly for x ∈ [0, 1], and lim
b→∞

ϑb = z(x) uniformly for x ∈
[0, 1];

(iv) Let Lb = −d d2

dx2 − bf2(z−ϑb)+ bϑbf
′
1(z−ϑb). Then Lb is a differentiable ope-

rator in C2
B [0, 1] and all eigenvalues of Lb are strictly positive, which implies

that Lb is a non-degenerate and positive operator in C2
B [0, 1].

If K(0, v) 6≡ 0, then (9) cannot be reduced into a scalar system, which makes
it difficult to study nonnegative solutions of (9). We first consider the decoupled
subsystem

dSxx − bvf2(S) = 0, x ∈ (0, 1),
dvxx + (1−K(0, v))bvf2(S) = 0, x ∈ (0, 1),
Sx(0) = −1, Sx(1) + νS(1) = 0, vx(0) = vx(1) + νv(1) = 0.

(14)

By similar arguments as in Lemmas 3.1–3.2 (see Page 11), we establish the priori
estimates for nonnegative solutions of (14).

Lemma 2.3. Suppose (H1) − (H3) hold and let (S, v) be a nonnegative solution
of (14) with v 6≡ 0. Then S + v < z, 0 < S < z, 0 < v < ϑb on [0, 1]. Moreover,
b > σ1.

Next, we show the uniqueness of positive equilibria of (14) by the degree theory.
To this end, let χ = z − S. Then (14) is equivalent to

dχxx + bvf2(z − χ) = 0, x ∈ (0, 1),
dvxx + (1−K(0, v))bvf2(z − χ) = 0, x ∈ (0, 1),
χx(0) = χx(1) + νχ(1) = 0, vx(0) = vx(1) + νv(1) = 0.

(15)

Introduce the spaces:

X0 = C[0, 1]× C[0, 1],
W0 = {(χ, v) ∈ X0|χ ≥ 0, v ≥ 0 for x ∈ [0, 1]},
Ω0 = {(χ, v) ∈W0|χ < z, v < max

[0,1]
ϑb + 1}.

Then W0 is a cone of X0 and Ω0 is a bounded open set in W0. We define Aτ :
[0, 1]×X0 → X0 by

Aτ (χ, v) :=

(
−d d2

dx2
+M

)−1(
τbvf2(z − χ) +Mχ
τ(1−K(0, v))bvf2(z − χ) +Mv

)
,

where
(
−d d2

dx2 +M
)−1

is the inverse operator of −d d2

dx2 +M subject to the boun-

dary conditions vx(0) = vx(1) + νv(1) = 0, M is large enough such that M + τ(1−
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K(0, v))bf2(z − χ) > 0 for all (χ, v) ∈ Ω0, τ ∈ [0, 1] and x ∈ [0, 1]. Hence, for any
τ ∈ [0, 1], we have Aτ : Ω0 → W0. It follows from the standard elliptic regularity
theory that Aτ is compact and continuously differentiable. Let A = A1. By Lemma
2.3, (15) (or (14) equivalently) has a nonnegative solution if and only if the operator
A has a fixed point in Ω0. Moreover, similar arguments as in Lemma 2.3 indicate
that Aτ has no fixed points on ∂Ω0.

Lemma 2.4. Suppose (H1) − (H3) hold. Then (i) index(A,Ω0,W0) = 1; (ii)
index(A, (0, 0),W0) = 0 provided that b > σ1.

Proof. (i) It follows from similar arguments as in Lemma 2.3 that Aτ has no fixed
points on ∂Ω0. By the homotopic invariance of the degree, we obtain

index(A,Ω0,W0) = index(Aτ ,Ω0,W0) = index(A0,Ω0,W0).

Here index(A,Ω0,W0) is the index of the compact operator A on Ω0 in the cone W
(see [8, 9, 10]). Clearly, (0, 0) is the unique fixed point of A0 in Ω0. Hence,

index(A,Ω0,W0) = index(A0,Ω0,W0) = index(A0, (0, 0),W0).

By some standard calculations (see [8, 9, 10, 31]), we have index(A0, (0, 0),W0) = 1.
Hence, index(A,Ω0,W0) = 1.

(ii) Let A′(0, 0) be the Fréchet derivative of A at (0, 0) with respect to (χ, v).
Suppose A′(0, 0)(φ, ψ)> = (φ, ψ)> with (φ, ψ) ∈W 0 − (0, 0). Then

dφxx + bf2(z)ψ = 0, x ∈ (0, 1),
dψxx + bf2(z)ψ = 0, x ∈ (0, 1),
φx(0) = φx(1) + νφ(1) = 0, ψx(0) = ψx(1) + νψ(1) = 0.

Since b > σ1 and ψ ≥ 0, it is easy to see that ψ ≡ 0, which implies φ ≡ 0, a
contradiction to (φ, ψ) ∈ W 0 − (0, 0). Hence, (0, 0) is an isolated fixed point of A
in W0.

Let A′(0, 0)(φ, ψ)> = λ(φ, ψ)>. Then

−λdφxx + (λ− 1)Mφ = bf2(z)ψ, x ∈ (0, 1),

−dψxx +Mψ =
1

λ
(M + bf2(z))ψ, x ∈ (0, 1),

φx(0) = φx(1) + νφ(1) = 0, ψx(0) = ψx(1) + νψ(1) = 0.

(16)

Consider the eigenvalue problem

− dψxx − bf2(z)ψ = ηψ, ψx(0) = ψx(1) + νψ(1) = 0. (17)

In view of b > σ1, we can find that the least eigenvalue η1 < 0 of (17). It follows
from Lemma A.2 that the spectral radius

λ0 := r

((
M − d d2

dx2

)−1

(M + bf2(z))

)
> 1.

Note that −λd d2

dx2 + (λ − 1)M is invertible subject to the boundary conditions
φx(0) = φx(1) + νφ(1) = 0 when λ > 1. We can conclude that the spectral radius
λ0 is an eigenvalue of A′(0, 0). Hence, A′(0, 0) has an eigenvalue greater than 1. It
follows from Lemma A.3 that index(A, (0, 0),W0) = 0 provided that b > σ1.

Lemma 2.5. Suppose (H1)− (H3) hold and (S0, v0) is a positive solution of (14).
Then (S0, v0) is non-degenerative, and index(A, (χ0, v0),W0) = 1, where χ0 = z −
S0.
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Proof. In order to show the nondegeneracy of (S0, v0), we only need to show that
the linearization of (14) at (S0, v0) with respect to (S, v)

L1φ− bf2(S0)ψ = 0, x ∈ (0, 1),
L2ψ + (1−K(0, v0))bv0f

′
2(S0)φ = 0, x ∈ (0, 1),

φx(0) = φx(1) + νφ(1) = 0, ψx(0) = ψx(1) + νψ(1) = 0.
(18)

only has trivial solution, where

L1φ = dφxx − bv0f
′
2(S0)φ,

L2ψ = dψxx + (1−K(0, v0))bf2(S0)ψ −Kv(0, v0)bv0f2(S0)ψ.

We prove it by an indirect argument, which is motivated by [17]. Suppose (φ, ψ) 6≡
(0, 0). It follows from bv0f

′
2(S0) > 0 that the operator L1 is invertible subject to

the boundary conditions φx(0) = φx(1) + νφ(1) = 0, and the principal eigenvalue
of L1 satisfies λ1(L1) < 0. Noting that the hypothesis (H3) and

d(v0)xx + (1−K(0, v0))bv0f2(S0) = 0, x ∈ (0, 1),
(v0)x(0) = (v0)x(1) + νv0(1) = 0,

(19)

we have λ1(L2) ≤ 0. The equality holds if Kv(0, v) ≡ 0.
We first claim that both φ, ψ must change sign in (0, 1). Suppose ψ > 0 in (0,

1) without loss of generality. Then it follows from the first equation of (18) that
L1φ > 0 in (0, 1). By the strong maximum principle, we have φ < 0 on [0, 1].
Multiplying the second equation of (18) by v0 and (19) by ψ, integrating over (0,
1), and applying Green’s formula, we have∫ 1

0

[Kv(0, v0)f2(S0)ψ − (1−K(0, v0))f ′2(S0)φ]bv2
0dx = 0,

a contradiction to
∫ 1

0
[Kv(0, v0)f2(S0)ψ− (1−K(0, v0))f ′2(S0)φ]bv2

0dx > 0. Assume
φ > 0 in (0, 1). There are two possibilities: (i)Kv(0, v) ≡ 0; (ii)Kv(0, v) ≥ 0, 6≡ 0.

In case (i). Similar arguments as above lead to
∫ 1

0
(1−K(0, v0))bv2

0f
′
2(S0)φdx = 0,

a contradiction. In case (ii), one can conclude that λ1(L2) < 0 and L2ψ = −(1 −
K(0, v0))bv0f

′
2(S0)φ < 0 on [0, 1]. The strong maximum principle implies ψ > 0 on

[0, 1]. Thus L1φ = bf2(S0)ψ > 0 in (0, 1). It follows from the strong maximum
principle that φ < 0 on [0, 1], a contradiction. Hence, both φ, ψ must change sign
in (0, 1).

Second, we claim that φ, ψ have at most finitely many zeros in (0,1) where φ, ψ
change sign. Suppose φ(xn) = 0 for an infinite sequence of distinct points {xn} ⊂
[0, 1], and φ changes sign at any xn. By compactness, we may assume that there is
x∞ ∈ [0, 1] such that xn → x∞(n → ∞) by passing to a subsequence if necessary.
By the mean value theorem, we conclude that φ(x∞) = 0, φx(x∞) = 0, φxx(x∞) =
0. It follows from the first equation of (18) that ψ(x∞) = 0. The maximum
principle applied to the first equation of (18) shows that ψ must change sign in
any neighborhood of x∞. Thus ψx(x∞) = 0. It follows from the uniqueness of the
Cauchy problem associated with (18) that (φ, ψ) = (0, 0), which is a contradiction
to (φ, ψ) 6= (0, 0). The same assertion holds for the zeros where ψ changes sign.

Clearly, φ(0) 6= 0 or ψ(0) 6= 0. Otherwise, φ(0) = 0, ψ(0) = 0. By the uniqueness
of the Cauchy problem associated with (18), we have (φ, ψ) ≡ (0, 0), a contradiction.
Hence, we may assume that φ(0) > 0 and 0 < x1 < x2 < · · · < xm < 1 are the
finite sequence of zeros of φ in (0,1) where it changes sign. Then φ(xi) = 0(i =
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1, 2, · · · ,m), and

φ > 0 in (x2i, x2i+1) for i ≥ 0, 2i+ 1 ≤ m+ 1,
φ < 0 in (x2i−1, x2i) for i ≥ 1, 2i ≤ m+ 1

where x0 = 0, xm+1 = 1. We claim that

(−1)jψ(xj) > 0, j ∈ {1, 2, · · · ,m}.
We first claim that ψ(x1) < 0 by an indirect argument. Suppose ψ(x1) ≥ 0. Note
that φ > 0 on (0, x1) and

L2ψ = −(1−K(0, v0))bv0f
′
2(S0)φ < 0 in (0, x1), ψx(0) = 0, ψ(x1) ≥ 0. (20)

There are two possibilities: (i)Kv(0, v) ≡ 0; (ii)Kv(0, v) ≥ 0, 6≡ 0.
(i) If Kv(0, v) ≡ 0, then L2ψ = dψxx + (1 − K(0, v0))bf2(S0)ψ and L2v0 = 0

in (0, x1). The general maximum principle implies that ψ/v0 cannot reach its non-

positive minimum in (0, x1). If min
x∈[0,1]

ψ/v0 = ψ(0)/v0(0) ≤ 0, then
(
ψ
v0

)
x
|x=0 > 0

by the general maximum principle, which is a contradiction to
(
ψ
v0

)
x
|x=0 = 0.

Suppose min
x∈[0,1]

ψ/v0 = ψ(x1)/v0(x1) ≤ 0. In view of ψ(x1) ≥ 0, we have ψ(x1) = 0

and ψ > 0 in (0, x1). Hence,

L1φ = bf2(S0)ψ > 0 in (0, 1), φx(0) = 0, φ(x1) = 0.

By the strong maximum principle, we obtain φ < 0 in (0, x1), a contradiction to
φ > 0 in (0, x1). Thus ψ(x1) < 0.

(ii) If Kv(0, v) ≥ 0, 6≡ 0, then λ1(L2) < 0. The maximum principle applied to
(20) shows that ψ > 0 in (0, x1). Hence,

L1φ = bf2(S0)ψ > 0 in (0, 1), φx(0) = 0, φ(x1) = 0.

By the strong maximum principle, we obtain φ < 0 in (0, x1), a contradiction to
φ > 0 in (0, x1). Thus ψ(x1) < 0.

Next, assume that ψ(xi) < 0 and φ < 0 in (xi, xi+1) for i ∈ {1, 2, · · · ,m − 1}.
We prove ψ(xi+1) > 0 by an indirect argument. Suppose ψ(xi+1) ≤ 0. Then

L2ψ = −(1−K(0, v0))bv0f
′
2(S0)φ > 0 in (xi, xi+1), ψ(xi) < 0, ψ(xi+1) ≤ 0. (21)

We also have two possibilities: (i)Kv(0, v) ≡ 0; (ii)Kv(0, v) ≥ 0, 6≡ 0.
(i) If Kv(0, v) ≡ 0, then L2ψ = dψxx + (1 − K(0, v0))bf2(S0)ψ and L2v0 = 0

in (xi, xi+1). The general maximum principle implies that ψ/v0 cannot reach
its nonnegative maximum in (xi, xi+1). By virtue of ψ(xi) < 0, one can con-
clude that ψ/v0 cannot reach its nonnegative maximum at x = xi. Assume that

max
x∈[xi,xi+1]

ψ/v0 = ψ(xi+1)/v0(xi+1) ≥ 0. By the hypothesis ψ(xi+1) ≤ 0, we get

ψ(xi+1) = 0 and ψ(x)/v0(x) < 0 in (xi, xi+1). Hence,

L1φ = bf2(S0)ψ < 0 in (xi, xi+1), φ(xi) = 0, φ(xi+1) = 0.

By the strong maximum principle, we obtain φ > 0 in (xi, xi+1), a contradiction to
φ < 0 in (xi, xi+1). Hence, ψ(xi+1) > 0.

(ii) If Kv(0, v) ≥ 0, 6≡ 0, then λ1(L2) < 0. The maximum principle applied to
(21) shows that ψ < 0 in (xi, xi+1). Hence,

L1φ = bf2(S0)ψ < 0 in (0, 1), φx(xi) = 0, φ(xi+1) = 0.

By the strong maximum principle, we obtain φ > 0 in (xi, xi+1), a contradiction to
φ < 0 in (xi, xi+1). Thus ψ(xi+1) > 0.
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Similar arguments show that if ψ(xi) > 0 and φ > 0 in (xi, xi+1), then ψ(xi+1) <
0. These imply (−1)jψ(xj) > 0, j ∈ {1, 2, · · · ,m}.

At last, we focus on the last interval to establish a contradiction. We have two
possibility to consider: (i) φ > 0 in (xm, 1); (ii) φ < 0 in (xm, 1).

(i) The case of φ > 0 in (xm, 1). By the above arguments, we have ψ(xm) > 0.
Note that

L2ψ = −(1−K(0, v0))bv0f
′
2(S0)φ < 0 in (xm, 1),

ψ(xm) > 0, ψx(1) + νψ(1) = 0.
(22)

Just as above, if Kv(0, v) ≡ 0, then L2ψ = dψxx + (1 − K(0, v0))bf2(S0)ψ and
L2v0 = 0 in (xm, 1). The general maximum principle implies that ψ/v0 cannot reach
its non-positive minimum in (xm, 1). By virtue of ψ(xm) > 0, one can conclude
that ψ/v0 cannot reach its non-positive minimum at x = xm. Then min

x∈[xm,1]
ψ/v0 =

ψ(1)/v0(1) ≤ 0. By the general maximum principle again, we have
(
ψ
v0

)
x
|x=1 < 0.

On the other hand, it is easy to see that
(
ψ
v0

)
x
|x=1 = ψx(1)v0(1)−ψ(1)(v0)x(1)

v20(1)
= 0,

a contradiction. If Kv(0, v) ≥ 0, 6≡ 0, then λ1(L2) < 0. The maximum principle
applied to (22) shows that ψ > 0 in (xm, 1). Hence,

L1φ = bf2(S0)ψ > 0 in (0, 1), φ(xm) = 0, φx(1) + νφ(1) = 0.

By the strong maximum principle, we obtain φ < 0 in (xm, 1), a contradiction to
φ > 0 in (xm, 1).

(ii) The case of φ < 0 in (xm, 1). By the above arguments, we have ψ(xm) < 0.
Note that

L2ψ = −(1−K(0, v0))bv0f
′
2(S0)φ > 0 in (xm, 1),

ψ(xm) < 0, ψx(1) + νψ(1) = 0.
(23)

Similarly, if Kv(0, v) ≡ 0, then L2ψ = dψxx + (1−K(0, v0))bf2(S0)ψ and L2v0 = 0
in (xm, 1). The general maximum principle implies that ψ/v0 cannot reach its
nonnegative maximum in (xm, 1). Noting that ψ(xm) < 0, one can conclude that
ψ/v0 cannot reach its nonnegative maximum at x = xm. Then max

x∈[xm,1]
ψ/v0 =

ψ(1)/v0(1) ≥ 0. By the general maximum principle again, we have
(
ψ
v0

)
x
|x=1 > 0,

a contradiction to
(
ψ
v0

)
x
|x=1 = ψx(1)v0(1)−ψ(1)(v0)x(1)

v20(1)
= 0. If Kv(0, v) ≥ 0, 6≡ 0,

then λ1(L2) < 0. The maximum principle applied to (23) shows that ψ < 0 in
(xm, 1). Hence,

L1φ = bf2(S0)ψ < 0 in (0, 1), φ(xm) = 0, φx(1) + νφ(1) = 0.

By the strong maximum principle, we obtain φ > 0 in (xm, 1), a contradiction to
φ < 0 in (xm, 1).

Therefore, we have (φ, ψ) ≡ (0, 0), which implies that any positive solution of
(14) is non-degenerative.

The remain task is to show index(A, (χ0, v0),W0) = 1, where χ0 = z−S0. To this
end, let A′(χ0, v0) be the Fréchet derivative operator of A at (χ0, v0) with respect to
(χ, v). It follows from the arguments above that 1 is not an eigenvalue of A′(χ0, v0),
and (χ0, v0) is a nondegenerate fixed-point of A in W0. Hence,

index(A, (χ0, v0),W0)=index(A, (χ0, v0), X0)=index(A′(χ0, v0), (0, 0), X0)=(−1)σ

by the Leray-Schauder formula, where σ is the sum of the multiplicities of all eigen-
values of A′(χ0, v0) which are greater than one. Suppose λ > 1 is an eigenvalue of
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A′(χ0, v0) with the corresponding eigenfunction (φ, ψ). Then A′(χ0, v0)(φ, ψ)> =
λ(φ, ψ)> leads to

L1(λ)φ = −bf2(z − χ0)ψ, x ∈ (0, 1),
L2(λ)ψ = (1−K(0, v0))bv0f

′
2(z − χ0)φ, x ∈ (0, 1),

φx(0) = φx(1) + νφ(1) = 0, ψx(0) = ψx(1) + νψ(1) = 0,

where

L1(λ)φ = λdφxx − (λ− 1)Mφ− bv0f
′
2(z − χ0)φ,

L2(λ)ψ = λdψxx−(λ−1)Mψ+(1−K(0, v0))bf2(z−χ0)ψ−Kv(0, v0)bv0f2(z−χ0)ψ.

It follows from λ > 1 and bv0f
′
2(z − χ0) > 0 that the operator L1(λ) is invertible

subject to the boundary conditions φx(0) = φx(1) + νφ(1) = 0, and the principal
eigenvalue of L1(λ) satisfies λ1(L1(λ)) < 0. Noting that the equation (19) and λ > 1,
we have λ1(L2(λ)) < 0 by Lemma A.1. By similar arguments as we have dealt with
(18), we can show (φ, ψ) = (0, 0). Hence, A′(χ0, U0) has no eigenvalue greater than
1. Thus index(A, (χ0, U0),W0) = (−1)0 = 1.

Remark 1. Suppose (H1)− (H3) hold and (S0, v0) is a positive solution of (14).
It follows from the proof of Lemma 2.5 that for any λ ≥ 1, the operator

B(λ) :=

(
L1(λ) bf2(z − χ0)

−(1−K(0, v0))bv0f
′
2(z − χ0) L2(λ)

)
is invertible in C2

B [0, 1]×C2
B [0, 1], where C2

B [0, 1] = {u ∈ C2[0, 1] : ux(0) = ux(1) +
νu(1) = 0}. In particular, B = B(1) is invertible in C2

B [0, 1]× C2
B [0, 1].

Theorem 2.6. Suppose (H1)− (H3) hold. Then

(i) the trivial solution (z, 0, 0) of (9) is the unique nonnegative solution provided
that b ≤ σ1;

(ii) there exists a unique positive solution of (9) provided that b > σ1, denoted by
(S∗, v∗, p∗).

Proof. (i) is a direct result of Lemma 2.3.
(ii) We first show there exists a unique positive solution of (14) provided that

b > σ1. It suffices to show A has a unique positive fixed point in Ω0. It follows from
Lemma 2.3 that the fixed points of A in Ω0 are two types, which are the trivial fixed
point (0, 0) and the positive fixed points (χ, v). It follows from Lemma 2.5 that any
positive fixed point (χ0, v0) of A is non-degenerative and index(A, (χ0, v0),W0) = 1.
Meanwhile, by the compactness argument on the operator A and the non-degeneracy
of its fixed points (including (0, 0) and positive fixed points), one knows that there
are at most finitely many positive fixed points in Ω0. Let them be (χi, vi)(i =
1, 2, · · · ,m). Then index(A, (χi, vi),W0) = 1 for i = 1, 2, · · · ,m. By the additivity
property of the fixed point index and Lemma 2.4, we have

1 = index(A,Ω0,W0) = index(A, (0, 0),W0) +

m∑
i=1

index(A, (χi, vi),W0) = m.

That is, there exists a unique positive solution of (14) provided that b > σ1, which
is denoted by (S∗, v∗). Let p∗ be the unique solution to the problem

dpxx +K(0, v∗)bv∗f2(S∗) = 0, x ∈ (0, 1), px(0) = px(1) + νp(1) = 0.

It follows from the strong maximum principle that p∗ > 0 on [0, 1]. Hence, (9) has
a unique positive solution (S∗, v∗, p∗) provided that b > σ1.
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3. Existence of positive solutions. Clearly, (z, 0, 0, 0) is the trivial solution of
(6)-(7). It follows from Theorems 2.1–2.2 that (6)-(7) possesses two semi-trivial
nonnegative solutions (z − θa, θa, 0, 0) and (S∗, 0, v∗, p∗) provided that a > λ1, b >
σ1. The aim of this section is to establish the existence of positive solutions of
(6)-(7). To this end, we first derive the priori estimates for nonnegative solutions
of (6)-(7).

Lemma 3.1. Suppose (H1) − (H3) hold and (S, u, v, p) is a nonnegative solution
of (6)-(7) with u 6≡ 0, v 6≡ 0, p 6≡ 0. Then S+u+ v+ p < z, 0 < S < z, 0 < u < θa,
0 < v < ϑb, 0 < p < ϑb, 0 < v + p < ϑb on [0, 1].

Proof. Let Φ = z − (S + u+ v + p). Then

−dΦxx = cpu ≥ 0, 6≡ 0, x ∈ (0, 1), Φx(0) = Φx(1) + νΦ(1) = 0.

It follows from the strong maximum principle that Φ > 0 on [0, 1]. That is,
0 ≤ S + u+ v + p < z(x) on [0, 1]. Noting that

−dSxx + (au
∫ 1

0
f ′1(τS)dτ + bv

∫ 1

0
f ′2(τS)dτ)S = 0, x ∈ (0, 1),

Sx(0) = −1, Sx(1) + νS(1) = 0.

It follows from the strong maximum principle that S > 0 on [0, 1]. Hence, 0 < S <
z− u− v− p on [0, 1]. In particular, 0 < S < z, 0 < S < z− u, 0 < S < z− (v+ p)
and 0 < S < z − v on [0, 1]. Similarly, we have

−duxx + cpu = auf1(S) ≥ 0, 6≡ 0, x ∈ (0, 1), ux(0) = ux(1) + νu(1) = 0.

By the strong maximum principle, we obtain that u > 0 on [0, 1]. In view of
0 < S < z − u on [0, 1], we get

0 = duxx+auf1(S)−cpu ≤ duxx+auf1(z−u), x ∈ (0, 1), ux(0) = ux(1)+νu(1) = 0,

which implies u < θa on [0, 1]. Namely, 0 < u < θa on [0, 1]. Similarly, by virtue
of 0 < S < z − (v + p) < z − v on [0, 1], we have v, p > 0 and v + p < ϑb on [0, 1],
which imply 0 < v < ϑb, 0 < p < ϑb on [0, 1].

Lemma 3.2. Suppose (H1) − (H3) hold and (S, u, v, p) is a nonnegative solution
of (6)-(7) with u 6≡ 0, v 6≡ 0, p 6≡ 0. Then

(i) a > λ1, b > σ1;
(ii) for b > σ1 fixed, there exists some positive constant Λ0 such that a < Λ0.

Proof. (i) It follows from Lemma 3.1 that S, u, v, p > 0 and S < z on [0, 1]. By
Lemma A.1, we have

a = λ1(cp, f1(S)) > λ1(0, f1(z)) = λ1,

where λ1(cp, f1(S)) is the principal eigenvalue of −dφxx + cpφ = λf1(z)φ, x ∈
(0, 1), φx(0) = φx(1) + νφ(1)(cf. Lemma A.1). Similarly, we get

b = λ1(K(u, v)bf2(S), f2(S)) > λ1(0, f2(z)) = σ1.

(ii) Assume that (Si, ui, vi, pi) is a positive solution of (6)-(7) with a = ai and
ai →∞. Then it follows from the equation

−d(ui)xx + cpiui = aiuif1(Si), x ∈ (0, 1), (ui)x(0) = (ui)x(1) + νui(1) = 0,

that ai = λ1(cpi, f1(Si)) < λ1(cϑb, f1(Si)). Noting that ai → ∞, one can find that
Si → 0 a.e. in (0, 1) as i→∞. On the other hand, it follows from the equation

d(vi)xx +K(ui, vi)bvif2(Si) = bvif2(Si), x ∈ Ω, (vi)x(0) = (vi)x(1) + νvi(1) = 0
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that b = λ1(K(ui, vi)bf2(Si), f2(Si)), which implies b → ∞ since Si → 0 a.e. in
(0, 1) as i→∞. This is a contradiction. Hence, there exists some positive constant
Λ0 such that a < Λ0.

Let χ = z − S. Then the steady state system (6)-(7) is equivalent to

dχxx + auf1(z − χ) + bvf2(z − χ) = 0, x ∈ (0, 1),
duxx + auf1(z − χ)− cpu = 0, x ∈ (0, 1),
dvxx + (1−K(u, v))bvf2(z − χ) = 0, x ∈ (0, 1),
dpxx +K(u, v)bvf2(z − χ) = 0, x ∈ (0, 1),
χx(0) = χx(1) + νχ(1) = 0, ux(0) = ux(1) + νu(1) = 0,
vx(0) = vx(1) + νv(1) = 0, px(0) = px(1) + νp(1) = 0.

(24)

Moreover, by Lemma 3.1, (S, u, v, p) is a nonnegative solution of (6)-(7) if and only
if (χ, u, v, p) is a nonnegative solution of (24). As mentioned before, nonnegative
solutions of (24) can be divided into three types:

(i) the trivial solution E0 = (χ, u, v, p) = (0, 0, 0, 0),
(ii) the semi-trivial solutions E1 = (χ, u, v, p) = (θa, θa, 0, 0) exists if a > λ1 and

E2 = (χ, u, v, p) = (z − S∗, 0, v∗, p∗) exists if b > σ1,
(iii) positive solutions (χ, u, v, p) with χ, u, v, p > 0 on [0, 1].

Next, we turn to study positive solutions of (24). To this end, we introduce the
spaces

C+[0, 1] = {u ∈ C[0, 1] : u ≥ 0 on [0, 1]},
X = C[0, 1]× C[0, 1]× C[0, 1]× C[0, 1],
W = C+[0, 1]× C+[0, 1]× C+[0, 1]× C+[0, 1],
Ω = {(χ, u, v, p) ∈W : χ < z, u < max

[0,1]
θa + 1, v < max

[0,1]
ϑb + 1, p < max

[0,1]
ϑb + 1}},

Then W is a cone of X and Ω is a bounded open set in W. Define a differential
operator Aτ : [0, 1]× Ω→ X by

Aτ (χ, u, v, p) :=

(
−d d2

dx2
+M

)−1


τauf1(z − χ) + τbvf2(z − χ) +Mχ
τauf1(z − χ)− τcpu+Mu
τ(1−K(u, v))bvf2(z − χ) +Mv
τK(u, v)bvf2(z − χ) +Mp

 ,

where
(
−d d2

dx2 +M
)−1

is the inverse operator of −d d2

dx2 +M subject to the boun-

dary conditions vx(0) = vx(1) +νv(1) = 0, M is large enough such that M − cp > 0
for all (χ, u, v, p) ∈ Ω and x ∈ [0, 1]. Hence, for any τ ∈ [0, 1], we have Aτ : Ω→W .
It follows from standard elliptic regularity theory that Aτ is compact and conti-
nuously differentiable. Let A = A1. By Lemma 3.1, there exists a nonnegative
solution of (6)-(7) (or (24) equivalently) if and only if there exists a fixed point of
the operator A in Ω. Moreover, similar arguments as in Lemma 3.1 indicate that Aτ
has no fixed points on ∂Ω. To figure out whether there exist positive fixed points of
A or not, we need to calculate the index of the trivial and semi-trivial fixed points
of A firstly.

Let λ̂1, σ̂1 be the principal eigenvalues of the problems respectively,

−d(φ̂1)xx + cp∗φ̂1 = λ̂1f1(S∗)φ̂1, x ∈ (0, 1),

(φ̂1)x(0) = (φ̂1)x(1) + νφ̂1(1) = 0,

d(ψ̂1)xx+σ̂1(1−K(θa, 0))f2(z − θa)ψ̂1 =0, x ∈ (0, 1),

(ψ̂1)x(0)=(ψ̂1)x(1)+νψ̂1(1)=0,

(25)
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with the corresponding eigenfunctions φ̂1, ψ̂1 > 0 on [0, 1], normalized with max
[0,1]

φ̂1 =

1, max
[0,1]

ψ̂1 = 1. It follows from Lemma 3.1 and Lemma A.1 that

λ̂1 = λ1 (cp∗, f1(S∗)) > λ1(0, f1(z)) = λ1.

Similarly,

σ̂1 = λ1 (0, (1−K(θa, 0))f2(z − θa)) > λ1(0, f2(z)) = σ1.

Moreover, it follows from Theorem 2.1 and Lemma A.1 that the function σ̂1(a)
depends continuously on the parameter a on [λ1,+∞) with lim

a→λ1

σ̂1(a) = σ1 and

lim
a→+∞

σ̂1(a) = +∞. Furthermore, if Ku(u, v) ≥ 0, then σ̂1(a) is strictly increasing

on [λ1,+∞). That is, the following lemma holds, whose proof is exactly similar to
Lemma 2.3 in [23].

Lemma 3.3. Suppose (H1)−(H3) hold and Ku(u, v) ≥ 0. Then the function σ̂1(a)
depends continuously on the parameter a on [λ1,+∞), and is strictly increasing on
[λ1,+∞). Moreover, lim

a→λ1

σ̂1(a) = σ1 and lim
a→+∞

σ̂1(a) = +∞.

Lemma 3.4. Suppose (H1)− (H3) hold and a > λ1, b > σ1. Then

(i) index(A,Ω,W ) = 1;
(ii) index(A, E0,W ) = 0;
(iii) index(A, E1,W ) = 0 if b > σ̂1, and index(A, E1,W ) = 1 if b < σ̂1;

(iv) index(A, E2,W ) = 0 if a > λ̂1, and indexW (A, E2,W ) = 1 if a < λ̂1.

Proof. (i)-(ii) can be shown by similar arguments as in Lemma 2.4, and we omit it
here.

(iii) To calculate index(A, E1,W ), we decompose X into

X1 = {(χ, u, 0, 0) : χ, u ∈ C[0, 1]}, X2 = {(0, 0, v, p) : v, p ∈ C[0, 1]}.

Let W1 = W ∩ X1,W2 = W ∩ X2 and U = N(E1) ∩W1, where N(E1) is a small
neighborhood of E1 in W . Then U is relatively open and bounded. Choosing ε > 0
small enough, we have

index(A, E1,W ) = degW (I −A, U ×W2(ε), 0),

where W2(ε) = {(0, 0, v, p) ∈ W2 : ‖(v, p)‖X2 < ε}. Let Q : X → X1 be the
projection such that Q(χ, u, v, p) = (χ, u). Denote A1 = QA,A2 = (I−Q)A. Then
we have A(χ, u, v, p) = (A1(χ, u, v, p),A2(χ, u, v, p)). Moreover, A2(χ, u, 0, 0) ≡ 0
for (χ, u) ∈ U and A1(χ, u, 0, 0) 6= (χ, u) for (χ, u) ∈ ∂U.

Next, we determine the spectral radius r(A′2(E1)|W2
) of the operator A′2(E1)|W2

.
Direct computation leads to

A′2(E1)|W2
=

(
−d d2

dx2
+M

)−1(
(1−K(θa, 0))bf2(z − θa) +M 0
K(θa, 0)bf2(z − θa) M

)
.

Hence, A′2(E1)|W2
(ψ, ζ)> = λ(ψ, ζ)> gives

−dψxx +Mψ =
1

λ
[(1−K(θa, 0))bf2(z − θa)ψ +Mψ], x ∈ (0, 1),

−dζxx +Mζ =
1

λ
[K(θa, 0)bf2(z − θa)ψ +Mζ], x ∈ (0, 1),

ψx(0) = ψx(1) + νψ(1) = 0, ζx(0) = ζx(1) + νζ(1) = 0.

(26)
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Consider the eigenvalue problem

−dψxx − b(1−K(θa, 0))f2(z − θa)ψ = ηψ, x ∈ (0, 1),
ψx(0) = ψx(1) + νψ(1) = 0.

(27)

Noting that

d(ψ̂1)xx + σ̂1(1−K(θa, 0))f2(z − θa)ψ̂1 = 0, x ∈ (0, 1),

(ψ̂1)x(0) = (ψ̂1)x(1) + νψ̂1(1) = 0,

we can find that the least eigenvalue η1 < 0 of (27) if b > σ̂1, and the least eigenvalue
η1 > 0 of (27) if b < σ̂1. It follows from Lemma A.2 that the spectral radius

r

[
(M − d d2

dx2
)−1(M + (1−K(θa, 0))bf2(z − θa))

]
> 1

if b > σ̂1, and

r

[
(M − d d2

dx2
)−1(M + (1−K(θa, 0))bf2(z − θa))

]
< 1

if b < σ̂1. In view of the spectral radius r
(
M − d d2

dx2

)−1

(M) < 1, we can con-

clude that (26) has eigenvalues greater than 1 and 1 is not an eigenvalue of (26)
corresponding to a positive eigenvector provided that b > σ̂1, and (26) has no eigen-
values greater than or equal to 1 provided that b < σ̂1. Hence, the spectral radius
r(A′2(E1)|W2

) > 1 and 1 is not an eigenvalue of A′2(E1)|W2
corresponding to a po-

sitive eigenvector provided that b > σ̂1 and the spectral radius r(A′2(E1)|W2
) < 1

provided that b < σ̂1. It follows from Lemma A.4 that for ε > 0 small,

index(A, E1,W )=degW (I−A, U×W2(ε), 0)=

{
0 if b > σ̂1,

degW1
(I −A1|W1

, U, 0) if b < σ̂1.

By Leray-Schauder degree theory, degW1
(I −A1|W1 , U, 0) = (−1)m, where m is the

sum of the multiplicities of all eigenvalues of the Fréchet derivativeA′1(E1) which are
greater than one. Consider the eigenvalue problem A′1(E1)|W1

(ξ, φ)> = λ(ξ, φ)>.
Then we have

−λdξxx + (λ− 1)Mξ = −aθaf ′1(z − θa)ξ + af1(z − θa)φ, x ∈ (0, 1),
−λdφxx + (λ− 1)Mφ = af1(z − θa)φ− aθaf ′1(z − θa)ξ, x ∈ (0, 1),
ξx(0) = ξx(1) + νξ(1) = 0, φx(0) = φx(1) + νφ(1) = 0.

Let Φ = ξ − φ. Then

−dΦxx =
1− λ
λ

MΦ, x ∈ (0, 1),Φx(0) = Φx(1) + νΦ(1) = 0.

If Φ ≡ 0, then

−dφxx +Mφ =
1

λ
[af1(z − θa)− aθaf ′1(z − θa) +M ]φ, x ∈ (0, 1),

φx(0) = φx(1) + νφ(1) = 0.
(28)

Noting that the first eigenvalue of the eigenvalue problem

−dϕxx − [af1(z − θa)− aθaf ′1(z − θa)]ϕ = ηϕ, x ∈ (0, 1),
ϕx(0) = ϕx(1) + νϕ(1) = 0.

is larger than 0. It follows from Lemma A.2 that the spectral radius

r

[
(M − d d2

dx2
)−1(M + af1(z − θa)− aθaf ′1(z − θa))

]
< 1.
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Hence, (28) has no eigenvalues greater than or equal to 1. If Φ 6≡ 0, then it is easy
to see that λ < 1. Hence, A′1(E1)|W1 has no eigenvalues greater than or equal to 1.
It follows that for ε > 0 small

index(A, E1,W ) = degW (I−A, U×W2(ε), 0) = degW1
(I−A1|W1

, U, 0) = (−1)0 = 1

provided that b < σ̂1.
(iv) In order to calculate index(A, E2,W ), we decomposeX intoX1 ={(χ, 0, v, p) :

χ, v, p ∈ C[0, 1]}, X2 = {(0, u, 0, 0) : u ∈ C[0, 1]}. Let W1 = W ∩X1,W2 = W ∩X2

and U = N(E2) ∩W1, where N(E2) is a small neighborhood of E2 in W . Then U
is relatively open and bounded. Choosing ε > 0 small enough, we have

index(A, E2,W ) = degW (I −A, U ×W2(ε), 0),

where W2(ε) = {(0, u, 0, 0) ∈W2 : ‖u‖C[0,1] < ε}. Let Q : X → X1 be the projection
such that Q(χ, u, v, p) = (χ, v, p). Denote A1 = QA,A2 = (I −Q)A. Then we have

A(χ, u, v, p) = (A1(χ, u, v, p),A2(χ, u, v, p)).

Moreover, A2(χ, 0, v, p) ≡ 0 for (χ, v, p) ∈ U and A1(χ, 0, v, p) 6= (χ, v, p) for
(χ, v, p) ∈ ∂U.

Next, we determine the spectral radius r(A′2(E2)|W2) of the operator A′2(E2)|W2 .
Direct computation leads to

A′2(E1)|W2
=

(
−d d2

dx2
+M

)−1

(af1(S∗)− cp∗ +M) .

Hence, A′2(E2)|W2
φ = λφ gives

−dφxx +Mφ =
1

λ
(af1(S∗)φ− cp∗φ+Mφ), x ∈ (0, 1),

φx(0) = φx(1) + νφ(1) = 0.
(29)

Consider the eigenvalue problem

− dϕxx + cp∗ϕ− af1(S∗)ϕ = ηϕ, x ∈ (0, 1), ϕx(0) = ϕx(1) + νϕ1(1) = 0. (30)

If a > λ̂1, then the first eigenvalue of the eigenvalue problem (30) is less than 0. It
follows from Lemma A.2 that the spectral radius

r

[
(−d d2

dx2
+M)−1(af1(S∗)− cp∗ +M)

]
> 1,

and 1 is not an eigenvalue of (29) corresponding to a positive eigenvector. That
is, the spectral radius r(A′2(E1)|W2

) > 1 and 1 is not an eigenvalue of A′2(E1)|W2

corresponding to a positive eigenvector provided that a > λ̂1. If a < λ̂1, then the
first eigenvalue of the eigenvalue problem (30) is larger than 0. It follows from

Lemma A.2 that the spectral radius r(A′2(E2)|W2
) < 1 provided that a < λ̂1. It

follows from Lemma A.4 that for ε > 0 small,

index(A, E2,W ) = degW (I−A, U×W2(ε), 0)=

{
0 if a > λ̂1,

degW1
(I −A1|W1

, U, 0) if a < λ̂1.

By Leray-Schauder degree theory, degW1
(I − A1|W1

, U, 0) = (−1)m, where m is
the sum of the multiplicities of all eigenvalues of the Fréchet derivative A′1(E2)
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which are greater than one. Suppose λ ≥ 1 is an eigenvalue of A′1(E2)|W1 with the
corresponding eigenfunction (ξ, ψ, ζ) 6= (0, 0, 0). Then

L1(λ)ξ = −bf2(S∗)ψ, x ∈ (0, 1),
L2(λ)ψ = (1−K(0, v∗))bv∗f ′2(S∗)ξ, x ∈ (0, 1),
L3(λ)ζ = −K(0, v∗)bf2(S∗)ψ −Kv(0, v

∗)bv∗f2(S∗)ψ
+K(0, v∗)bv∗f ′2(S∗)ξ, x ∈ (0, 1),

ξx(0) = ξx(1) + νξ(1) = 0, ψx(0) = ψx(1) + νψ(1) = 0,
ζx(0) = ζx(1) + νζ(1),

(31)

where

L1(λ)ξ = λdξxx − (λ− 1)Mξ − bv∗f ′2(S∗)ξ, L3(λ)ζ = λdζxx − (λ− 1)Mζ,

L2(λ)ψ = λdψxx − (λ− 1)Mψ + (1−K(0, v∗))bf2(S∗)ψ −Kv(0, v
∗)bv∗f2(S∗)ψ.

We first consider the decoupled system

L1(λ)ξ = −bf2(S∗)ψ, x ∈ (0, 1),
L2(λ)ψ = (1−K(0, v∗))bv∗f ′2(S∗)ξ, x ∈ (0, 1),
ξx(0) = ξx(1) + νξ(1) = 0, ψx(0) = ψx(1) + νψ(1) = 0.

(32)

It follows from λ ≥ 1 and bv∗f ′2(S∗) > 0 that the operator L1(λ) is invertible subject
to the boundary conditions ξx(0) = ξx(1) + νξ(1) = 0, and the principal eigenvalue
of L1(λ) satisfies λ1(L1(λ)) < 0. Noting that (S∗, v∗) is the unique positive solution
to (14), we can find that for λ ≥ 1, the principal eigenvalue λ1(L2(λ)) ≤ 0. The
equality holds if and only if Kv(0, v) ≡ 0 and λ = 1. It follows from Remark 1 that
for any λ ≥ 1, the operator

B(λ) :=

(
L1(λ) bf2(S∗)

−(1−K(0, v∗))bv∗f ′2(S∗) L2(λ)

)
is invertible, which implies (ξ, ψ) = (0, 0). Meanwhile, it is easy to see that L3(λ)
is invertible, which leads to ζ = 0 on [0, 1]. This is a contradiction to (ξ, ψ, ζ) 6=
(0, 0, 0). Thus A′1(E2)|W1 has no eigenvalues greater than or equal to 1. That is,
m = 0. It follows that for ε > 0 small

index(A, E2,W ) = degW (I−A, U×W2(ε), 0) = degW1
(I−A1|W1

, U, 0) = (−1)0 = 1

provided that a < λ̂1.

Theorem 3.5. Suppose (H1)−(H3) hold. Then the steady state system (6)-(7) has

at least one positive solution if (i) a > λ̂1, b > σ̂1 or (ii) λ1 < a < λ̂1, σ1 < b < σ̂1.

Proof. It suffices to show that (24) has at least a positive solution. Suppose (24)
has no positive solutions. In view of, a > λ1, b > σ1, the system (24) has only the
trivial solution E0 = (0, 0, 0, 0), and the semi-trivial solutions E1 = (θa, θa, 0, 0) and
E2 = (z − S∗, 0, v∗, p∗). By the additivity of the index, we have

index(A,Ω,W ) = index(A, E0,W ) + index(A, E1,W ) + index(A, E2,W ).

It follows from Lemma 3.4 that

index(A, E0,W ) + index(A, E1,W ) + index(A, E2,W )

=

{
0 if a > λ̂1, b > σ̂1,

2 if λ1 < a < λ̂1, σ1 < b < σ̂1,

which is a contradiction to index(A,Ω,W ) = 1. Hence, (6)-(7) has at least one
positive solution in the case of (i) or (ii).
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4. Global bifurcation and stability. The aim of this section is devoted to study
the structure and stability of the nonnegative solutions of the steady state system
(6)-(7). Clearly, (6)-(7) has trivial solution (S, u, v, p) = (z, 0, 0, 0), which always
exists. If a > λ1, b > σ1, then it follows from Theorems 2.1-2.6 that (6)-(7) has two
semi-trivial solution branches

Γ1 = {(a, z − θa, θa, 0, 0) : a > λ1} and Γ2 = {(a, S∗, 0, v∗, p∗) : a ∈ R+}.

We first study the stability of the trivial solution (z, 0, 0, 0) and the semi-trivial
solutions (z − θa, θa, 0, 0) and (S∗, 0, v∗, p∗).

Theorem 4.1. Suppose (H1)− (H3) hold. Then

(i) the trivial solution (z, 0, 0, 0) is stable if a < λ1 and b < σ1, and unstable if
a > λ1 or b > σ1;

(ii) the semi-trivial solution (z − θa, θa, 0, 0) is stable if b < σ̂1, and unstable if
b > σ̂1;

(iii) if K(0, v) ≡ 0, then (S∗, 0, v∗, p∗) = (z−ϑb, 0, ϑb, 0), and it is stable if a < λ̂1,

and unstable if a > λ̂1.

Proof. The proof of (i) is standard, and is omitted here.
(ii) Consider the following linearized eigenvalue problem of (6)-(7) at

(z − θa, θa, 0, 0)

dξxx − aθaf ′1(z − θa)ξ − af1(z − θa)φ− bf2(z − θa)ψ + λξ = 0, x ∈ (0, 1),
dφxx + af1(z − θa)φ+ aθaf

′
1(z − θa)ξ − cθaζ + λφ = 0, x ∈ (0, 1),

dψxx + (1−K(θa, 0))bf2(z − θa)ψ + λψ = 0, x ∈ (0, 1),
dζxx +K(θa, 0)bf2(z − θa)ψ + λζ = 0, x ∈ (0, 1),
ξx(0) = ξx(1) + νξ(1) = 0, φx(0) = φx(1) + νφ(1) = 0,
ψx(0) = ψx(1) + νψ(1) = 0, ζx(0) = ζx(1) + νζ(1) = 0.

(33)

Let Φ = ξ + φ and Ψ = ψ+ ζ. Then ξ = Φ− φ, ζ = Ψ−ψ and (φ,Φ,Ψ, ψ) satisfies

dφxx + af1(z − θa)φ− aθaf ′1(z − θa)φ+ aθaf
′
1(z − θa)Φ

−cθaΨ + cθaψ + λφ = 0, x ∈ (0, 1),
dΦxx − cθaΨ− bf2(z − θa)ψ + cθaψ + λΦ = 0, x ∈ (0, 1),
dΨxx + bf2(z − θa)ψ + λΨ = 0, x ∈ (0, 1),
dψxx + (1−K(θa, 0))bf2(z − θa)ψ + λψ = 0, x ∈ (0, 1),
φx(0) = φx(1) + νφ(1) = 0, Φx(0) = Φx(1) + νΦ(1) = 0,
Ψx(0) = Ψx(1) + νΨ(1) = 0, ψx(0) = ψx(1) + νψ(1) = 0.

(34)

It is easy to see that λ is an eigenvalue of (34) if and only if λ is an eigenvalue of
one of the following four operators:

−d d2

dx2
− af1(z − θa) + aθaf

′
1(z − θa), −d d2

dx2
,

−d d2

dx2
, −d d2

dx2
− (1−K(θa, 0))bf2(z − θa)

subject to the homogeneous Robin boundary conditions: φx(0) = φx(1)+νφ(1) = 0.

Clearly, all eigenvalues of the operator −d d2

dx2 subject to the homogeneous Robin
boundary conditions: φx(0) = φx(1) + νφ(1) = 0 are larger than 0. By Theorem

2.1, all eigenvalues of the operator La = −d d2

dx2 −af1(z−θa)+aθaf
′
1(z−θa) subject

to the homogeneous Robin boundary conditions: φx(0) = φx(1) + νφ(1) = 0 are
greater than 0. Meanwhile, it follows from Lemma A.1 that all eigenvalues of the
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operator −d d2

dx2 − (1 −K(θa, 0))bf2(z − θa) are larger than 0 if b < σ̂1, and it has
an eigenvalue less than 0 if b > σ̂1. Therefore, (ii) holds.

(iii) If K(0, v) ≡ 0, then it follows from Lemma 2.2 that (S∗, 0, v∗, p∗) = (z −
ϑb, 0, ϑb, 0). To investigate the stability of the semi-trivial solution (z−ϑb, 0, ϑb, 0),
we consider the linearized eigenvalue problem of (6)-(7) at (z − ϑb, 0, ϑb, 0)

dξxx − bϑbf ′2(z − ϑb)ξ − af1(z − ϑb)φ− bf2(z − ϑb)ψ + λξ = 0,
dφxx + af1(z − ϑb)φ+ λφ = 0,
dψxx + bf2(z − ϑb)ψ −Ku(0, ϑb)bϑbf2(z − ϑb)φ

+bϑbf
′
2(z − ϑb)ξ + λψ = 0,

dζxx +Ku(0, ϑb)bϑbf2(z − ϑb)φ+ λζ = 0,
ξx(0) = ξx(1) + νξ(1) = 0, φx(0) = φx(1) + νφ(1) = 0,
ψx(0) = ψx(1) + νψ(1) = 0, ζx(0) = ζx(1) + νζ(1) = 0.

(35)

Let Φ = ξ + ψ. Then ψ = Φ− ξ and (ξ,Φ, ζ, φ) satisfies

dξxx − bϑbf ′2(z − ϑb)ξ − af1(z − ϑb)φ
−bf2(z − ϑb)(Φ− ξ) + λξ = 0, x ∈ (0, 1),

dΦxx − af1(z − ϑb)φ−Ku(0, ϑb)bϑbf2(z − ϑb)φ+ λΦ = 0, x ∈ (0, 1),
dζxx +Ku(0, ϑb)bϑbf2(z − ϑb)φ+ λζ = 0, x ∈ (0, 1),
dφxx + af1(z − ϑb)φ+ λφ = 0, x ∈ (0, 1),
ξx(0) = ξx(1) + νξ(1) = 0, Φx(0) = Φx(1) + νΦ(1) = 0,
ζx(0) = ζx(1) + νζ(1) = 0, ψx(0) = ψx(1) + νψ(1) = 0.

(36)

It is easy to see that λ is an eigenvalue of (36) if and only if λ is an eigenvalue of
one of the following four operators:

−d d2

dx2
− bf2(z − ϑb) + bϑbf

′
2(z − ϑb), −d

d2

dx2
, −d d2

dx2
, −d d2

dx2
− af1(z − ϑb)

subject to the homogeneous Robin boundary conditions: φx(0) = φx(1)+νφ(1) = 0.

Clearly, all eigenvalues of the operator −d d2

dx2 subject to the homogeneous Robin
boundary conditions: φx(0) = φx(1) + νφ(1) = 0 are larger than 0. By Lemma 2.2,

all eigenvalues of the operator Lb = −d d2

dx2 − bf2(z − ϑb) + bϑbf
′
2(z − ϑb) subject

to the homogeneous Robin boundary conditions: φx(0) = φx(1) + νφ(1) = 0 are
greater than 0. Meanwhile, it follows from Lemma A.1 that all eigenvalues of the

operator −d d2

dx2 − af1(z − ϑb) are larger than 0 if a < λ̂1, and it has an eigenvalue

less than 0 if a > λ̂1. Therefore, (iii) holds.

Remark 2. In Lemma 4.1, we only establish the stability of the semi-trivial so-
lution (S∗, 0, v∗, p∗) = (z − ϑb, 0, ϑb, 0) when K(0, v) ≡ 0. For the general case
of K(0, v) 6≡ 0, in view of Remark 1, we can show that the semi-trivial solution

(S∗, 0, v∗, p∗) is unstable if a > λ̂1 by similar arguments as in Theorem 4.1. Howe-

ver, for a < λ̂1, the stability of the semi-trivial solution (S∗, 0, v∗, p∗) remains open
although lots of numerical simulations strongly suggest that (S∗, 0, v∗, p∗) is stable.

In fact, for a < λ̂1, we can prove that the linearized eigenvalue problem of (6)-(7) at
(S∗, 0, v∗, p∗) has no eigenvalues less than or equal to 0 (c.f. Lemma 2.5). However,
it is very difficult to figure out whether the linearized eigenvalue problem of (6)-(7)
at (S∗, 0, v∗, p∗) has an eigenvalue with real part less than 0 or not.

Next, we focus on positive solutions of (6)-(7). The main tool is the bifurca-
tion theorem[6, 26]. The main idea is to construct positive solutions of (6)-(7)
bifurcating from the semi-trivial solution branch Γ2 by taking b > σ1 fixed and
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a as the bifurcation parameter. To this end, let χ = z − S. Then the system
(6)-(7) is equivalent to (24). Moreover the change of variables maps the trivial
solution (S, u, v, p) = (z, 0, 0, 0) of (6)-(7) to (χ, u, v, p) = (0, 0, 0, 0), and maps the
semi-trivial nonnegative solution branches Γ1 and Γ2 of (6)-(7) to the semi-trivial
nonnegative ones

Γ′1 = {(a, θa, θa, 0, 0) : a > λ1} and Γ′2 = {(a, z − S∗, 0, v∗, p∗) : a ∈ R+}.

Let X = W 2,q(0, 1) × W 2,q(0, 1) × W 2,q(0, 1) × W 2,q(0, 1) with q > 1. Then
X ↪→ C1[0, 1]× C1[0, 1]× C1[0, 1]× C1[0, 1]. For a small ε > 0, we define

Ωε = {(χ, u, v, p) ∈ X : −ε < χ < z, −ε < u < max
[0,1]

θa + 1,

−ε < v < max
[0,1]

ϑb + 1,−ε < p < max
[0,1]

ϑb + 1}.

Then Ωε is an open connected subset of X. By Lemma 3.1, any nonnegative solution
(χ, u, v, p) ∈ Ωε of (24). Moreover, Lemma 3.2 implies that the necessary conditions
for the existence of a positive solution of (6)-(7) are a > λ1, b > σ1, and there exists
some positive constant Λ0 such that a < Λ0 provided that b > σ1 fixed. Hence, for
b > σ1 fixed and λ1 < a < Λ0, there exists a positive constant M large enough such
that

M + af1(z − χ)− cp > 0 (37)

for all (χ, u, v, p) ∈ Ωε and x ∈ [0, 1].
Define T : R+ × Ωε → X by

T (a, χ, u, v, p) :=

(
−d d2

dx2
+M

)−1


auf1(z − χ) + bvf2(z − χ) +Mχ
auf1(z − χ)− cpu+Mu
(1−K(u, v))bvf2(z − χ) +Mv
K(u, v)bvf2(z − χ) +Mp

 ,

where
(
−d d2

dx2 +M
)−1

is the inverse operator of −d d2

dx2 +M subject to the boun-

dary conditions ux(0) = ux(1) + νu(1) = 0. By standard elliptic regularity theory,
T : R+ × Ωε → X is completely continuous. Let

G(a, χ, u, v, p) = (χ, u, v, p)> − T (a, χ, u, v, p).

Then G : R+ × Ωε → X is C1 smooth, and the zeros of G(a, χ, u, v, p) = 0 with
0 ≤ χ < z, 0 ≤ u < θa, 0 ≤ v < ϑb, 0 ≤ p < ϑb correspond to the nonnegative
solutions of (24).

Let D(χ,u,v,p)G(a, z−S∗, 0, v∗, p∗) be the Fréchet derivative of G(a, χ, u, v, p) with
respect to (χ, u, v, p) at (z−S∗, 0, v∗, p∗). Clearly, D(χ,u,v,p)G(a, z−S∗, 0, v∗, p∗) is

a Fredholm operator, and D(χ,u,v,p)G(a, z − S∗, 0, v∗, p∗)(ξ, φ, ψ, ζ)> = 0 gives

dξxx − bv∗f ′2(S∗)ξ + af1(S∗)φ+ bf2(S∗)ψ = 0, x ∈ (0, 1),
dφxx + af1(S∗)φ− cp∗φ = 0, x ∈ (0, 1),
dψxx + (1−K(0, v∗))bf2(S∗)ψ −Kv(0, v

∗)bv∗f2(S∗)ψ
−(1−K(0, v∗))bv∗f ′2(S∗)ξ −Ku(0, v∗)bv∗f2(S∗)φ = 0, x ∈ (0, 1),

dζxx −K(0, v∗)bv∗f ′2(S∗)ξ +Ku(0, v∗)bv∗f2(S∗)φ
+K(0, v∗)bf2(S∗)ψ +Kv(0, v

∗)bv∗f2(S∗)ψ = 0, x ∈ (0, 1),
ξx(0) = ξx(1) + νξ(1) = 0, φx(0) = φx(1) + νφ(1) = 0,
ψx(0) = ψx(1) + νψ(1) = 0, ζx(0) = ζx(1) + νζ(1) = 0.
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If φ ≡ 0 on [0, 1], then (ξ, ψ, ζ) satisfies (31) with λ = 1. Recalling the operator

B(1) :=

(
L1(1) bf2(S∗)

−(1−K(0, v∗))bv∗f ′2(S∗) L2(1)

)
is invertible, one can deduce that (ξ, ψ) = (0, 0). It follows that ζ = 0 on [0, 1].
That is, the operator

B :=

 L1(1) bf2(S∗) 0
−(1−K(0, v∗))bv∗f ′2(S∗) L2(1) 0

−K(0, v∗)bv∗f ′2(S∗) K(0, v∗)bf2(S∗)+Kv(0, v
∗)bv∗f2(S∗) d

d2

dx2


is invertible. Hence φ 6≡ 0.

Take a = λ̂1, φ = φ̂1, where λ̂1, φ̂1 are the principal eigenvalue and eigenfunction
of (25) respectively. In view of the invertibility of the operator B, we can deduce
that the null space of D(χ,u,v,p)G(a, z − S∗, 0, v∗, p∗) is

N(D(χ,u,v,p)G(a, z − S∗, 0, v∗, p∗)) = span{(ξ1, φ̂1, ψ1, ζ1)},

where (ξ1, ψ1, ζ1) is the unique solution to

B(ξ, ψ, ζ) = (−af1(S∗)φ̂1,Ku(0, v∗)bv∗f2(S∗)φ̂1,−Ku(0, v∗)bv∗f2(S∗)φ̂1)>. (38)

That is, dimN(D(χ,u,v,p)G(a, z − S∗, 0, v∗, p∗)) = 1.

Next, we determine the range of the operator D(χ,u,v,p)G(λ̂1, z − S∗, 0, v∗, p∗).
To this end, suppose that (χ, u, v, p) ∈ R(D(χ,u,v,p)G(λ̂1, z − S∗, 0, v∗, p∗)), which

is the range of the operator D(χ,u,v,p)G(λ̂1, z − S∗, 0, v∗, p∗). Then there exists
(ξ, φ, ψ, ζ) ∈ X such that

D(χ,u,v,p)G(λ̂1, z − S∗, 0, v∗, p∗)(ξ, φ, ψ, ζ)> = (χ, u, v, p)>.

Direct computation leads to

dξxx − bv∗f ′2(S∗)ξ + λ̂1f1(S∗)φ+ bf2(S∗)ψ = dχxx −Mχ, x ∈ (0, 1),

dφxx + λ̂1f1(S∗)φ− cp∗φ = duxx −Mu, x ∈ (0, 1),

dψxx + (1−K(0, v∗))bf2(S∗)ψ −Kv(0, v
∗)bv∗f2(S∗)ψ − (1−K(0, v∗))bv∗f ′2(S∗)ξ

−Ku(0, v∗)bv∗f2(S∗)φ = dvxx −Mv, x ∈ (0, 1),

dζxx −K(0, v∗)bv∗f ′2(S∗)ξ +Ku(0, v∗)bv∗f2(S∗)φ (39)

+K(0, v∗)bf2(S∗)ψ +Kv(0, v
∗)bv∗f2(S∗)ψ = dpxx −Mp, x ∈ (0, 1),

ξx(0) = ξx(1) + νξ(1) = 0, φx(0) = φx(1) + νφ(1) = 0,

ψx(0) = ψx(1) + νψ(1) = 0, ζx(0) = ζx(1) + νζ(1) = 0.

Note that φ̂1 satisfies

−d(φ̂1)xx + cp∗φ̂1 = λ̂1f1(S∗)φ̂1, x ∈ (0, 1), (φ̂1)x(0) = (φ̂1)x(1) + νφ̂1(1) = 0.

Multiplying this equation by φ and the second equation of (39) by φ̂1, and integra-
ting over (0, 1) by parts, we get∫ 1

0

[M + λ̂1f1(S∗)− cp∗]φ̂1udx = 0.
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The invertibility of the operator B implies that the range of D(χ,u,v,p)G(λ̂1, z−
S∗, 0, v∗, p∗) is

R(D(χ,u,v,p)G(λ̂1, z − S∗, 0, v∗, p∗))

={(χ, u, v, p) ∈ X :

∫ 1

0

[M + λ̂1f1(S∗)− cp∗]φ̂1udx = 0}.

What’s more,

D2
a(χ,u,v,p)G(λ̂1, z − S∗, 0, v∗, p∗)(ξ1, φ̂1, ψ1, ζ1)>

=− (−d d2

dx2
+M)−1(f1(S∗)φ̂1, f1(S∗)φ̂1, 0, 0)>

By virtue of (−d d2

dx2 +M)−1(f1(S∗)φ̂1) > 0 and (37), we have

−
∫ 1

0

[M + λ̂1f1(S∗)− cp∗]φ̂1(−d d2

dx2
+M)−1(f1(S∗)φ̂1)dx < 0.

Hence,

D2
a(χ,u,v,p)G(λ̂1, z−S∗, 0, v∗, p∗)(ξ1, φ̂1, ψ1, ζ1)> 6∈ R(D(χ,u,v,p)G(λ̂1, z−S∗, 0, v∗, p∗)).

Let

Z =R(D(χ,u,v,p)G(λ̂1, z − S∗, 0, v∗, p∗))

={(χ, u, v, p) ∈ X :

∫ 1

0

[M + λ̂1f1(S∗)− cp∗]φ̂1udx = 0}.

Then span{(ξ1, φ̂1, ψ1, ζ1)} ⊕ Z = X. Now, we are ready to apply the bifurcation
theorem from a simple eigenvalue (see Theorem 1.7 in [6] or Theorem 4.3 in [26]).
It follows that there exists a τ0 > 0 and C1 curve (a(τ), Q(τ),Φ(τ),Ψ(τ), P (τ)) :
(−τ0, τ0) 7→ (−∞,+∞)× Z such that

(i) a(0) = λ̂1,
(ii) Q(0) = 0,Φ(0) = 0,Ψ(0) = 0, P (0) = 0,
(iii) G(a(τ), χ(τ), u(τ), v(τ), p(τ)) = 0 for |τ | < τ0,

where χ(τ) = z−S∗+ τ(ξ1 +Q(τ)), u(τ) = τ(φ̂1 +Φ(τ)), v(τ) = v∗+ τ(ψ1 +Ψ(τ)),
p(τ) = p∗ + τ(ζ1 + τP (τ)) with |τ | < τ0. Namely, (χ(τ), u(τ), v(τ), p(τ)) is the
solution of the system (24) with a = a(τ). Let S(τ) = z−χ(τ). Then the bifurcation
branch

Γ′ = {(a(τ), S(τ), u(τ), v(τ), p(τ)) : τ ∈ (0, τ0)}
is exactly the positive solution branch of the system (6)-(7). That is, we have the
following local bifurcation result.

Lemma 4.2. Suppose (H1)− (H3) hold and b > σ1 fixed. Then the positive soluti-
ons of (6)−(7) bifurcate from the semitrivial solution branch Γ2 = {(a, S∗, 0, v∗, p∗) :

a ∈ R+} if and only if a = λ̂1, and the set of positive solutions to (6) − (7) near

(λ̂1, S
∗, 0, v∗, p∗) is a smooth curve

Γ′ = {(a(τ), S(τ), u(τ), v(τ), p(τ)) : τ ∈ (0, τ0)}

for some τ0 > 0, where S(τ) = S∗ − τ(ξ1 + Q(τ)), u(τ) = τ(φ̂1 + Φ(τ)), v(τ) =
v∗+τ(ψ1+Ψ(τ)) and p(τ) = p∗+τ(ζ1+τP (τ)) with |τ | < τ0. a(τ), Q(τ),Φ(τ),Ψ(τ)

and P (τ) are smooth functions with respect to τ , which satisfy a(0) = λ̂1, Q(0) =
0,Φ(0) = 0,Ψ(0) = 0, P (0) = 0 and (Q(τ),Φ(τ),Ψ(τ), P (τ)) ∈ Z.



A MODEL WITH ALLOCATED TOXIN PRODUCTION 1395

Next, we extend the local bifurcation Γ′ to the global one by the global bifurcation
results for Fredholm operators (see Theorems 4.3-4.4 in [26]). Noting that T : R+×
Ωε → X is C1 smooth and compact, we can conclude that the Fréchet derivative
D(χ,u,v,p)G(a, χ, u, v, p) is Fredholm with index zero for any (a, χ, u, v, p) ∈ R+×Ωε.
Now we can apply Theorem 4.3 in [26] to obtain a connected component Υ of the
set

{(a, χ, u, v, p) ∈ R+ × Ωε : G(a, χ, u, v, p) = 0, (χ, u, v, p) 6= (z − S∗, 0, v∗, p∗)}

emanating from Γ′2 at (λ̂1, z − S∗, 0, v∗, p∗). Moreover, either Υ is not compact

in R+ × Ωε or Υ contains a point (ā, z − S∗, 0, v∗, p∗) with ā 6= λ̂1. Set Υ′ =
{(a, S, u, v, p) : S = z − χ, and (a, χ, u, v, p) ∈ Υ}. Then Γ′ ⊂ Υ′. Let X0 =
{(S, u, v, p) ∈ C1[0, 1] × C1[0, 1] × C1[0, 1] × C1[0, 1] : S > 0, u > 0, v > 0, p >
0 on [0, 1]}. Then Υ′ ∩ (R+ ×X0) 6= ∅.

Let Γ = Υ′ ∩ (R+×X0). Then Γ consists of the local positive solution branch Γ′

near the bifurcation point (λ̂1, S
∗, 0, v∗, p∗). Let Υ+ be the connected component

of Υ′\{(a(τ), S(τ), u(τ), v(τ), p(τ)) : τ ∈ (−τ0, 0)}. Then Γ ⊂ Υ+. It follows from
Theorem 4.4 in [26] that Υ+ satisfies one of the following alternatives

(i) it is not compact;

(ii) it contains a point (ā, S∗, 0, v∗, p∗) with ā 6= λ̂1;
(iii) it contains a point (a, S∗ + S, u, v∗ + v, p∗ + p), where (S, u, v, p) 6= 0 and

(S, u, v, p) ∈ Z.

Theorem 4.3. Suppose (H1) − (H3) hold and b > σ1 fixed. Then there exists a
continuum of positive solutions to (6)-(7), denoted by Γ = {(a, S, u, v, p)} ⊂ R+ ×
X0, which bifurcates from the semi-trivial solution branch Γ2 = {(a, S∗, 0, v∗, p∗) :

a ∈ R+} at (λ̂1, S
∗, 0, v∗, p∗), and meets the other semi-trivial solution branch Γ1 =

{(a, z − θa, θa, 0, 0) : a > λ1} at (ā, z − θā, θā, 0, 0). In particular, (6)-(7) has a

positive solution (S, u, v, p) if a lies between λ̂1 and ā. Here ā is determined by
b = σ̂1(ā).

Proof. For any (a, S, u, v, p) ∈ Γ, we have u > 0 on [0, 1]. Hence,
∫ 1

0
[M+λ̂1f1(S∗)−

cp∗]φ̂1udx > 0, a contradiction to (S, u, v, p) ∈ Z. Thus (iii) is impossible. Suppose
(ii) holds. Then we can find a sequence of points (an, Sn, un, vn, pn) ⊂ Γ∩(R+×X0),
which converges to (ā, S∗, 0, v∗, p∗) in R+×X0. It follows from the equation for un,

we have an = λ1(cpn, f1(Sn)). Letting n → ∞, we get ā = λ1(cp∗, f1(S∗)) = λ̂1.
Thus (ii) can not occur.

By Lemmas 3.1-3.2, any nonnegative solution of (6)-(7) with u 6≡ 0, v 6≡ 0, p 6≡ 0
satisfies

0 < S ≤ z, 0 < u < θa, 0 < v < ϑb, 0 < p < ϑb,

and there exists some positive constant Λ0 such that λ1 < a < Λ0 when b > σ1

fixed. By Lp estimates and Sobolev embedding theorems, we can deduce that
‖S‖C1 , ‖u‖C1 , ‖v‖C1 , ‖p‖C1 are bounded. Hence, for b > σ1 fixed, Γ is bounded in
R+×X0. Thus (i) implies that Γ∩ (R+×∂X0) contains a point (ā, S̄, ū, v̄, p̄) other

than (λ̂1, S
∗, 0, v∗, p∗). That is, there exists (ā, S̄, ū, v̄, p̄) ∈ {Γ−(λ̂1, S

∗, 0, v∗, p∗)}∩
(R+ × ∂X0) which is the limit of a sequence

(an, Sn, un, vn, pn) ⊂ Γ ∩ (R+ ×X0), Sn > 0, un > 0, vn > 0, pn > 0 on [0, 1].

Clearly, λ1 ≤ ā ≤ Λ0. It follows from the maximum principle that S̄ > 0 on [0, 1].
Hence (ā, S̄, ū, v̄, p̄) ∈ R+ × ∂X0 means either (i) ū ≥ 0, ū(x0) = 0 for some point



1396 HUA NIE, SZE-BI HSU AND JIANHUA WU

x0 ∈ [0, 1] or (ii) v̄ ≥ 0, v̄(x0) = 0 for some point x0 ∈ [0, 1] or (iii) p̄ ≥ 0, p̄(x0) = 0
for some point x0 ∈ [0, 1]. Note that ū satisfies

−dūxx + cp̄ū = aūf1(S̄), x ∈ (0, 1), ūx(0) = ūx(1) + νū(1) = 0.

By the maximum principle, we have ū ≡ 0 if ū(x0) = 0 for some point x0 ∈
[0, 1]. Similarly, we can show v̄ ≡ 0, p̄ ≡ 0 for the other two cases. There-
fore, we have the following alternatives (i)(S̄, ū, v̄, p̄) ≡ (z, 0, 0, 0); (ii)(S̄, ū, v̄, p̄) ≡
(S∗, 0, v∗, p∗); (iii)(S̄, ū, v̄, p̄) ≡ (z − θa, θa, 0, 0).

Suppose (S̄, ū, v̄, p̄) ≡ (z, 0, 0, 0). Then the sequence (an, Sn, un, vn, pn) satisfies
an → ā, (Sn, un, vn, pn) → (z, 0, 0, 0) in X as n → ∞. It follows from the equation
for vn, we have b = λ1(0, (1 − K(un, vn))f2(Sn)) → λ1(0, f2(z)) = σ1 as n → ∞.
Namely, b = σ1, a contradiction.

Suppose (S̄, ū, v̄, p̄) ≡ (S∗, 0, v∗, p∗). Then the sequence (an, Sn, un, vn, pn) sa-
tisfies that an → ā, (Sn, un, vn, pn) → (S∗, 0, v∗, p∗) in X as n → ∞. It follows
from the equation for un, we have an = λ1(cpn, f1(Sn)). Letting n → ∞, we get

ā = λ1(cp∗, f1(S∗)) = λ̂1, a contradiction to ā 6= λ̂1.
Thus the remaining possibility is (S̄, ū, v̄, p̄) ≡ (z−θa, θa, 0, 0). Then the sequence

(an, Sn, un, vn, pn)→ (ā, z − θā, θā, 0, 0)

in R+ ×X as n→∞. It follows from the equation for vn, we have

b = λ1(0, (1−K(un, vn))f2(Sn))
→ λ1(0, (1−K(θā, 0))f2(z − θā)) = λ1((1−K(θā, 0))f2(z − θā)) = σ̂1(ā)

as n→∞. Note that the function σ̂1(a) depends continuously on the parameter a
on [λ1,+∞) with lim

a→λ1

σ̂1(a) = σ1 and lim
a→+∞

σ̂1(a) = +∞. Hence, for b > σ1 fixed,

there exists a ā ∈ (λ1,+∞) such that b = σ̂1(ā).

Remark 3. Suppose (H1)− (H3) hold and Ku(u, v) ≥ 0 for u, v ≥ 0. By Lemma
3.3, the eigenvalue σ̂1(a) is continuous and strictly increasing on [λ1,+∞) with
lim
a→λ1

σ̂1(a) = σ1 and lim
a→+∞

σ̂1(a) = +∞. Hence, for b > σ1 fixed, there exists a

unique ā ∈ (λ1,+∞) such that b = σ̂1(ā). Thus, (6)-(7) has a positive solution if a

lies between λ̂1 and ā.

Next, we turn to investigate the direction and stability of the bifurcation solu-
tion Γ′ near the bifurcation point. To this end, substituting the local bifurcation
solution (a(τ), S(τ), u(τ), v(τ), p(τ)) with τ ∈ (0, τ0) into the second equation of
(6), differentiating with respect to τ at τ = 0, where S(τ) = S∗ − τ(ξ1 + Q(τ)),

u(τ) = τ(φ̂1 + Φ(τ)), v(τ) = v∗ + τ(ψ1 + Ψ(τ)) and p(τ) = p∗ + τ(ζ1 + τP (τ)), we
have

dΦ̇(0)xx+ȧ(0)φ̂1f1(S∗)+λ̂1Φ̇(0)f1(S∗)−λ̂1φ̂1f
′
1(S∗)ξ1−cp∗Φ̇(0)−cζ1φ̂1 = 0, (40)

where Φ̇(0), ȧ(0) are the derivative of Φ(τ), a(τ) with respect to τ at τ = 0 respecti-
vely. Note that

d(φ̂1)xx + λ̂1f1(S∗)φ̂1 − cp∗φ̂1 = 0, x ∈ (0, 1),

(φ̂1)x(0) = (φ̂1)x(1) + νφ̂1(1) = 0.
(41)

Multiplying the equation (40) by φ̂1 and the equation (41) by Φ̇(0), and integrating
over (0, 1) by parts, we obtain

ȧ(0)

∫ 1

0

f1(S∗)φ̂2
1dx = λ̂1

∫ 1

0

f ′1(S∗)φ̂2
1ξ1dx+ c

∫ 1

0

φ̂2
1ζ1dx.
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Here (ξ1, ψ1, ζ1) is the unique solution to (38). Since it is hard to determine the sign
of ξ1, ζ1, we cannot determine the direction and stability of the local bifurcation
solution Γ′ near the bifurcation point. However, if K(0, v) ≡ 0, then the semi-
trivial solution (S∗, 0, v∗, p∗) = (z−ϑb, 0, ϑb, 0), and the semi-trivial solution branch
Γ2 = {(a, S∗, 0, v∗, p∗) : a ∈ R+} becomes Γ2 = {(a, z − ϑb, 0, ϑb, 0) : a ∈ R+}.
What’s more, Kv(0, ϑb) ≡ 0. It follows from (38) that

−d(ζ1)xx = Ku(0, ϑb)bϑbf2(z−ϑb)φ̂1, x ∈ (0, 1), (ζ1)x(0) = (ζ1)x(1)+νζ1(1) = 0.

By the strong maximum principle, we have ζ1 > 0 provided that Ku(0, ϑb) >
0. Hence, we have the following result on the direction and stability of the local
bifurcation solution Γ′ near the bifurcation point.

Theorem 4.4. Suppose (H1) − (H3) hold, K(0, v) ≡ 0, Ku(0, v) > 0 for v > 0.
Let b > σ1 fixed. Then there exists a positive constant C large enough such that for
c ≥ C, the positive solution branch Γ′ of (6)-(7) is to the right, and it is stable.

Proof. Clearly, ζ1 > 0, and

ȧ(0)

∫ 1

0

f1(z − ϑb)φ̂2
1dx = λ̂1

∫ 1

0

f ′1(z − ϑb)φ̂2
1ξ1dx+ c

∫ 1

0

φ̂2
1ζ1dx. (42)

under the hypotheses (H1) − (H3) and K(0, v) ≡ 0, Ku(0, v) > 0. Hence, there
exists a positive constant C large enough such that for c ≥ C, we have ȧ(0) > 0,
which implies that the positive solution branch Γ′ of (6)-(7) is to the right when
c ≥ C. That is, there exists δ > 0 sufficiently small such that ȧ(τ) > 0 with
0 < τ < δ.

Next, we study the linearized stability of positive solutions lying on the bifur-
cation branch Γ′. Let L(a(τ), S(τ), u(τ), v(τ), p(τ)) be the linearized operator of
(6)-(7) at (a(τ), S(τ), u(τ), v(τ), p(τ)). By the application of Corollary 1.13 in [7],
there exist C1 functions a→ (µ(a),ℵ(a)), τ → (η(τ), ~(τ)) defined on the neighbor-

hoods of λ̂1 and 0 into R×X respectively, such that

(µ(λ̂1),ℵ(λ̂1)) = (0, ξ1, φ̂1, ψ1, ζ1) = (η(0), ~(0))

and on these neighborhoods

L(a, z − ϑb, 0, ϑb, 0)ℵ(a) + µ(a)ℵ(a) = 0 for |a− λ̂1| � 1,
L(a(τ), S(τ), u(τ), v(τ), p(τ))~(τ) + η(τ)~(τ) = 0 for |τ | � 1.

It follows from Theorem 1.16 in [7] that η(τ) ∼ −τ ȧ(τ)µ̇(λ̂1) for 0 < τ < δ.
Meanwhile, similar arguments as in Theorem 4.1(iii) indicate that µ(a) is a simple
eigenvalue of

dφxx + af1(z − ϑb)φ+ µ(a)φ = 0, x ∈ (0, 1), φx(0) = φx(1) + νφ(1) = 0.

and the derivative µ̇(λ̂1) < 0 by Lemma A.1. Thus η(τ) > 0, which implies that
the positive solution branch Γ′ of (6)-(7) is stable when c ≥ C.

Remark 4. Take K(u, v) = αu
β+u+v (see [5]) and the parameters α, β > 0 such

that 0 ≤ K(u, v) < 1. Then the hypotheses (H1) − (H3) hold, and K(0, v) ≡ 0,

Ku(u, v) = α(β+v)
(β+u+v)2 > 0 for u, v ≥ 0. Hence, it follows from Theorems 4.3-4.4 and

Remark 3 that for b > σ1 fixed,

(i) there exists a continuum of positive solutions to (6)-(7), denoted by Γ =
{(a, S, u, v, p)} ⊂ X0, which bifurcates from the semi-trivial solution branch

Γ2 = {(a, z − ϑb, 0, ϑb, 0) : a ∈ R+} at (λ̂1, z − ϑb, 0, ϑb, 0), and meets the
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other semi-trivial solution branch Γ1 = {(a, z − θa, θa, 0, 0) : a > λ1} at
(ā, z−θā, θā, 0, 0), where ā is uniquely determined by b = σ̂1(ā). In particular,

(6)-(7) has a positive solution if a lies between λ̂1 and ā.
(ii) there exists a positive constant C large enough such that for c ≥ C, the

positive solution branch Γ′ of (6)-(7) is to the right, and it is stable.

In [18], the unstirred chemostat model with constant toxin production (that is,
K(u, v) ≡ K0(constant)) has been studied. The results show that when the pa-
rameter c, which measures the effect of toxins, is large enough, the model only
has unstable positive solutions. Moreover, the species v always lose the competi-
tion. However, it follows from Theorem 4.4 that the unstirred chemostat model
with dynamically allocated toxin production possesses stable positive solutions(i.e.
coexistence solutions). From the biological point of view, dynamically allocated
toxin production has a positive effect on coexistence of species.

5. Numerical simulations and discussion. In this section, we present some
results of our numerical simulations performed with Matlab, which complement the
analytic results of the previous sections.

As [5], we consider two special cases that represent the extremes for reasonable
functions

K(u, v) =
αv

β + u+ v
, (43)

K(u, v) =
αu

β + u+ v
, (44)

where α, β are positive constants and chosen so that 0 < K(u, v) < 1 for u, v > 0.
(43) is monotone increasing in v while (44) is monotone increasing in u. These reflect
two opposite strategies. For (43), if v is large, it devotes more of its resources to
producing the toxin, which guards against invasion. For (44), if u is large, v increases
the toxin production since it is already losing the competition and facing extinction,
which is a desperation strategy. The advantage of this strategy is that if there is
no competition, no resource is wasted on toxin production.

The numerical simulations show that a wide variety of dynamical behaviors can
be achieved for the system with dynamically allocated toxin production, including
competition exclusion, bistable attractors, stable positive equilibria and stable limit
cycles. The most interesting numerical results are stable positive equilibria and sta-
ble limit cycles, which cannot occur in the system with constant toxin production.
Stable positive equilibria and limit cycles provide coexistence, which suggest a pos-
sible mechanism to explain coexistence phenomena. In all of our figures except
Figure 4(c)(d), the L1 norms of the solutions (S(·, t), u(·, t), v(·, t), p(·, t)) to (4)-(5)
are plotted versus the temporal variable. In Figure 4(c)(d), two positive equilibria
of (4)-(5) are plotted versus the spatial variable.

5.1. Numerical results with K(u, v) = αv
β+u+v . At first, we choose the basic

parameters of the species to be a = 1.17, b = 1.17, k1 = 0.017, k2 = 0.025 and
ν = 0.6. Namely, we assume that u is the better competitor in the absence of
toxins. Taking the parameters d = 0.1, α = 0.2, β = 0.01, and varying the parameter
values of c, we observe competitive exclusion independent of initial conditions and
competitive exclusion that depends on initial conditions (bistability).

More precisely, for small c, the species u can competitively exclude the species
v independent of initial conditions (see Figure 1(a)). Increasing the parameter
c, bistability occurs and either species u or species v is competitively excluded
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(a) (b)

(c) (d)

Figure 1. We further fix d = 0.1, α = 0.2, β = 0.01, and observe
the effects of the parameter c: bi-stability is observed in (b)(c) when
the parameter c = 0.1; competitive exclusion occurs in (a)(d) when
c = 0.05, 0.2 respectively.

depending on their initial conditions (see Figure 1(b)(c)). Increasing c eventually
causes the species v can competitively exclude the species u independent of initial
conditions (see Figure 1(d)). Biologically speaking, the numerical results show that
toxins can help the weaker competitor to win in the competition.

Secondly, we assume that v is the better competitor in the absence of toxins and
take the basic parameters of the species to be a = 1.17, b = 1.17, k1 = 1.7, k2 = 0.025
and ν = 0.6. Taking the parameters α = 0.8, β = 0.001, c = 0.2, and varying the
diffusion rate d, we observe competitive exclusion independent of initial conditions,
stable positive equilibria and stable limit cycles.

More precisely, for small d, the species v can competitively exclude the species u
independent of initial conditions (see Figure 2(a)). Increasing the diffusion rate d
can destabilize the system and cause it to switch to a stable limit cycle. Moreover,
the amplitude decreases when d increases(see Figure 2(b)(c)(d)). If one continues to
increase the diffusion rate d, the system generates a stable positive equilibrium (see
Figure 2(e)). Stable positive equilibria and stable limit cycles provide coexistence,
which can be called diffusion-driven coexistence. Increasing d eventually causes
the system to converge to the washout solution. That is, all species including two
competitors u, v and the toxin p go to zero eventually (see Figure 2(f)). As men-
tioned before, diffusion-driven coexistence can not occur when K(u, v) is constant.
Hence our numerical results imply that dynamically allocated toxin production is
sufficiently effective in the occurrence of coexisting.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. We further fix α = 0.8, β = 0.001, c = 0.2, take the
diffusion rates d = 0.4, 0.6, 0.65, 0.7, 0.9, 1.5 in (a)-(f), and observe
the effects of the diffusion rate d: (a) competition exclusion, (b)-(d)
stable limit cycles, (e) stable positive equilibrium, (f) washout so-
lution.

5.2. Numerical results with K(u, v) = αu
β+u+v . The basic assumption continues

that u is the better competitor in the absence of toxins. Thus we take the basic
parameters of the species to be a = 1.1, b = 1.1, k1 = 0.0567, k2 = 0.06 and ν = 0.6.
Taking the parameters d = 0.1, α = 0.2, β = 1, and varying the parameter values of
c, we observe competitive exclusion, bistable attractors and coexistence in the form
of stable equilibria.

More precisely, for small c, the species u can competitively exclude the species
v independent of initial conditions (see Figure 3(a)). Increasing the parameter
c, bistable attractors occur (see Figure 4(a)(b)). In this case, two positive equi-
libria appear, one stable and the other unstable(see Figure 4(c)(d)). The stable
positive equilibrium and the semitrivial solution (z − θa, θa, 0, 0) are the bistable
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(a) (b)

(c) (d)

Figure 3. We further fix d = 0.1, α = 0.2, β = 1, and observe
the effects of the parameter c: coexistence in the form of equilibria
is observed in (b)(c) when c = 0.2, 0.3 respectively; competitive
exclusion occurs in (a)(d) when c = 0.01, 0.6 respectively.

attractors and the result of the competition is determined by the initial conditi-
ons. If one continues to increase the parameter c, coexistence is observed in the
form of equilibria(see Figure 3(b)(c)). Increasing c eventually causes the species v
can competitively exclude the species u independent of initial conditions (see Fi-
gure 3(d)). Biologically speaking, the numerical results indicate that dynamically
allocated toxin production is sufficiently effective in the occurrence of coexisting,
and toxins can help the weaker competitor to win in the competition.
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Appendix. We state some well-known lemmas as appendix without proof, which
is useful for obtaining the main results in this paper.
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(a) (b)

(c) (d)

Figure 4. Taking d = 0.1, α = 0.2, β = 1, and c = 0.1, bistable
attractors occur, which are plotted in (a) and (b). Moreover, two
positive equilibria appear (see (c) and (d)).

Lemma A.1 ([4]). Assume that c(x), q(x) ∈ C(Ω), and c(x) ≥ 0, q(x) ≥ 0 on Ω in
the eigenvalue problem

−∆ϕ+ c(x)ϕ = λq(x)ϕ, x ∈ Ω,
∂ϕ

∂n
+ γ(x)ϕ = 0, x ∈ ∂Ω, (A.1)

where γ(x) ∈ C(∂Ω) and γ(x) ≥ 0. Then all eigenvalues of (A.1) can be listed in
order

0 < λ1(c, q) < λ2(c, q) ≤ λ3(c, q) ≤ · · · → ∞,

and

λ1(c, q) = inf
ϕ

∫
Ω

(|∇ϕ|2 + c(x)ϕ2)dx+
∫
∂Ω
γ(x)ϕ2ds∫

Ω
q(x)ϕ2dx

is a simple eigenvalue with the associated eigenfunction ϕ1 > 0 on Ω̄, which is called
the principal eigenvalue. Moreover, λi(c, q)(i = 1, 2, · · · ) is continuous with respect
to c and q, and the following comparison principles hold:

(i) λi(c1, q) ≤ λi(c2, q) if c1 ≤ c2 on Ω and the strict inequality holds if c1 6≡ c2,
(ii) λi(c, q1) ≥ λi(c, q2) if q1 ≤ q2 on Ω and the strict inequality holds if q1 6≡ q2.

In particular, we denote λi(0, q(x)) = λi(q).

Lemma A.2 ([29]). Let Ω be a bounded domain in Rn with boundary surface
∂Ω ∈ C2+γ , q(x) ∈ C(Ω) and P be a positive constant such that P − q(x) > 0 on
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Ω. Let λ1(q(x)) be the principal eigenvalue of the eigenvalue problem

−
n∑

i,j=1

Dj(aij(x)Diϕ) + q(x)ϕ = λϕ, x ∈ Ω,

n∑
i,j=1

aij(x)Diϕ cos(n, xj) + b(x)ϕ = 0, x ∈ ∂Ω,

where aij(x) ∈ C1(Ω), b(x) ∈ C(∂Ω), b(x) ≥ 0, and n is the outward unit normal
vector on ∂Ω. Then the following conclusions hold

(i) if λ1(q(x)) < 0 then the spectral radius r[(P −Dj(aij(x)Di))
−1(P −q(x))] > 1;

(ii) if λ1(q(x)) > 0 then the spectral radius r[(P −Dj(aij(x)Di))
−1(P −q(x))] < 1;

(iii) if λ1(q(x)) = 0 then the spectral radius r[(P−Dj(aij(x)Di))
−1(P−q(x))] = 1.

Lemma A.3 ([8, 9]). Let F : W → W be a compact, continuously differentiable
operator, W be a cone in the Banach space E with zero Θ. Suppose that W −W
is dense in E and that Θ ∈ W is a fixed point of F and A0 = F ′(Θ). Then the
following results hold:

(i) index(F,Θ,W ) = 1 if the spectral radius r(A0) < 1;
(ii) index(F,Θ,W ) = 0 if A0 has eigenvalue greater than 1 and Θ is an isolated

solution of x = F (x), that is h 6= A0h if h ∈W −Θ.

Here index(F,Θ,W ) is the index of the compact operator F at Θ in the cone W .

Lemma A.4 ([8, 9, 10]). Let E1 and E2 be ordered Banach spaces with positive
cones W1 and W2, respectively. Let E = E1×E2 and W = W1×W2. Then E is an
ordered Banach space with positive cone W. Let Ω be an open set in W containing
0 and Ai : Ω → Wi be completely continuous operators, i = 1, 2. Denote by (u, v)
a general element in W with u ∈ W1 and v ∈ W2, and define A : Ω → W by
A(u, v) = (A1(u, v), A2(u, v)). Let W2(ε) = {v ∈ W2 : ‖v‖E2 < ε}. Suppose U ⊂
W1∩Ω is relatively open and bounded, and A1(u, 0) 6= u for u ∈ ∂U , A2(u, 0) ≡ 0 for
u ∈ U. Suppose A2 : Ω→W2 extends to a continuously differentiable mapping of a
neighborhood of Ω into E2, W2−W2 is dense in E2 and T = {u ∈ U : u = A1(u, 0)}.
Then the following conclusions are true:

(i) degW (I − A,U ×W2(ε), 0) = 0 for ε > 0 small, if for any u ∈ T , the spectral
radius r(A′2(u, 0)|W2

) > 1 and 1 is not an eigenvalue of A′2(u, 0)|W2
correspon-

ding to a positive eigenvector.
(ii) degW (I − A,U ×W2(ε), 0) = degW1(I − A1|W1 , U, 0) for ε > 0 small, if for

any u ∈ T , the spectral radius r(A′2(u, 0)|W2
< 1.
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